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Motivation: Quantum Materials
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Materials that show macroscopic quantum behaviour because of electron 
correlations and/or geometry/dimensionality

e.g. high-Tc superconductors e.g. topological insulators

Enormous promise for future energy transport, sensing, computing etc.

Keimer et. al. Nature Phys. 13 1046; Tokura et. al. Nature Phys. 13 1056
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Magnetic quantum materials

3

The first class of quantum materials are generally magnetic, and in many cases, 
their novel properties are intimately related with their magnetism…

However, these are complex systems with spin, charge, and orbital degrees of 
freedom, which makes them difficult to deal with theoretically.

Basov and Chubukov Nature Phys. 7 272
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Magnetic quantum materials
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Can exotic states be achieved without chemical doping (and all the ensuing 
complexity)? Yes, in magnetic systems…

… however, most of these order at high temperature. Need to find a way to 
enhance quantum fluctuations and destroy conventional magnetic order.
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The path to quantum spin liquids
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Outline

• Magnetic frustration

• QSL in the kagome lattice antiferromagnet

• Ground state

• Excitations - inelastic neutron scattering

• Neutron scattering on kagome lattice materials

• Overview of Cu2+ minerals

• Herbertsmithite: our best shot at a QSL so far

• Volborthite: orbital order and trimerization

• KCu3As2O7(OD)3: multiferroicity in a material far from the QSL limit

• Conclusion

6
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What is frustration?
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Consequence 1: degeneracy
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3 choices

3 choices

Sz = ±1

Husimi and Syozi Prog. Theor. Phys. 5 117 (1950)
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Consequence 1: degeneracy
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2 choices

2 choices

+

+

-

In both cases, huge degeneracy in GS (sometimes lifted by fluctuations)
Large barrier to conventional magnetic order

(scalar)
chirality
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Consequence 2: competition
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+

Frustrated

120° “Néel”

Unfrustrated

hEiji = JS2
cos ✓ = �JS2

2

hEiji = �JS2
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Consequence 2: competition
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+

1p
2
[| "#i � | #"i]

Classical (vector) Quantum (operator)

hEiji = �JS(S + 1)

3
hEiji = JS2

cos ✓ = �JS2

2

120° “Valence bond”
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Valence bond states
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2 choices

2 choices

Just like in the classical case, there is an exponentially large number of dimer 
coverings of the lattice…
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Resonating Valence bond
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Just like in the classical case, there is an exponentially large number of dimer 
coverings of the lattice…

2 choices

2 choices
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Resonating Valence bond
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The system can gain energy by fluctuating between these configurations, as well 
as ones with longer-ranged bonds:

| i c1

c2

c3

=

+

+

+

+

+

RVB + charges
= superconductivity

Anderson Science 235 1196
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Excitations: spinons

15

If one of the singlets is broken, 



TUM, 20/11/2017

Excitations: spinons
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Excitations: spinons
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Excitations: spinons
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Fractionalized, (potentially) deconfined quasiparticles…
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Kagome lattice
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The S = 1/2 kagome lattice antiferromagnet is THE model of frustration in 2D: 

Is its ground state the long-sought RVB state?

H = J
X

i,j

Si · Sj
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Kagome lattice: history of the ground state

21

Its ground state was initially proposed to be a gapless QSL, then a gapped VBS:
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Ground State of the Kagome Lattice Heisenberg Antiferromagnet

Rajiv R. P. Singh
Department of Physics, University of California, Davis, CA 95616, USA

David A. Huse
Department of Physics, Princeton University, Princeton, NJ 08544, USA

(Dated: July 10, 2007)

Using series expansions around the dimer limit, we show that the ground state of the Heisenberg
Antiferromagnet on the Kagome Lattice appears to be a Valence Bond Crystal (VBC) with a 36-site
unit cell, and a ground state energy per site of E/J = −0.433 ± 0.001. It consists of a honeycomb
lattice of ‘perfect hexagons’. The energy difference between the ground state and other ordered
states with the maximum number of ‘perfect hexagons’, such as a stripe-ordered state, is of order
0.001 J . The energy of the 36 − site system, with periodic boundary conditions, is further lowered
by an amount of 0.005 ± 0.001 J , consistent with known results from Exact Diagonalization. The
dimerization order parameter is found to be robust. In addition, every unit cell has two singlet states
whose degeneracy is not lifted to 6th order in the expansion. We estimate this energy difference to
be smaller than 0.001 J . Two leading orders of perturbation theory give lowest triplet excitations
to be dispersionless and confined to the ‘perfect hexagons’.

PACS numbers: 75.10.Jm

The spin-half antiferromagnetic Kagome-Lattice
Heisenberg Model (KLHM) with Hamiltonian,

H = J
∑

⟨i,j⟩

Si · Sj , (1)

is a highly studied quantum spin model [1]. Its prop-
erties have been studied by a variety of numerical and
analytical techniques [2, 3, 4, 5, 6, 7, 8, 9]. Yet, the
precise nature of the ground state remains a subject of
debate. Proposals have included a number of Valence
Bond Crystals (VBC) [10, 11, 12, 13] as well as spin-
liquid states with algebraic correlations [14, 15]. Recent
experimental work on the material ZnCu3(OH)6Cl2has
attracted further interest to this model [16, 17, 18, 19],
although this material is likely to also have significant
Dzyloshinski-Moria anisotropy. [20]

Here, we show that the ground state of KLHM appears
to be a Valence Bond Crystal with a 36-site unit cell. It
consists of a Honeycomb lattice of perfect hexagons as
initially proposed by Marston and Zeng [10], discussed
in more detail by Nikolic and Senthil [12], and shown
in Fig 1. In a dimer covering, all triangles that have a
singlet valence bond are locally in a ground state. As is
well known, any singlet dimer covering leaves one-fourth
of all triangles in the Kagome lattice empty. All quan-
tum fluctuations in the ground state originate from these
empty triangles, since it is only there that the dimer cov-
ering is not locally an eigenstate of the Hamiltonian. We
develop series expansions around an arbitrary dimer cov-
ering using a Linked Cluster method [21] and compare
the energies of various dimer coverings. To carry out the
expansions, all (“strong”) bonds that make up the dimer
covering are given an interaction strength J and all other
(“weak”) bonds are given a strength λJ . Expansions
are then carried out in powers of λ and extrapolated to
λ = 1 where all bonds are equivalent in the Hamiltonian.
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FIG. 1: Ground state ordering pattern of low-energy
(“strong”) bonds (blue) for the Kagome Lattice Heisenberg
Model. The perfect hexagons are denoted as H, the empty tri-
angles by E and the pin-wheels as P. The two pinwheel states
that remain degenerate to high orders of perturbation the-
ory are denoted by thick solid (blue) and dashed (magneta)
bonds.

Following recent development of the Numerical Linked
Cluster scheme [22], we group together all weak bonds
belonging to each triangle. This significantly simplifies
the calculations. The simplicity of the problem is such
that only 5 graphs contribute to the ground state energy
to 5th order of the dimer expansion (see Fig 2). The re-

Singh and Huse PRB 76 180407 (R)
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where Xi1 = (Ri · e1). Here, ↵1 is the linear increment of
the magnetic field over one lattice constant. (Here and in
the sequel we set ~, the Bohr magneton and the gyromag-
netic factor equal to unity.) Identifying the observable A
as A =

P
(Ri · e1)Szi one sees immediately that its time

derivative is the total spin current in the e1-direction:

Ȧ = �i [A,H] =
X

hi,ji

Im{ei�ijS+i S
�
j }(Xi1 �Xj1) = J1.

(15)

In the orthogonal geometry one has the simple relation
Ja =

@H
@�a
, a = 1, 2, and the expression (11) takes the

form of a transverse current-current correlation function:

Kab = 2 Im
X

p6=n

hn|Ja|pihp|Jb|ni

(Ẽn � Ẽp)2
· (16)

This correlation function measures the transverse current
J2 generated in the e2-direction by a gradient of the mag-
netic field Bz along the e1-direction. Hence we arrive at
the linear relation

hJ2i = 2⇡Kab
@Bz

@X1
· (17)

At this point it is important to note that the above deriva-
tion of (17) is purely formal. It is a linear expansion with
respect to the perturbation V , (14), which, as it is obvious
from (14), becomes arbitrarily large in the thermodynamic
limit. Thus, (17) cannot be considered a physically mean-
ingful relation between the spin current and the gradient
of the inhomogeneous magnetic field. However, by employ-
ing a gauge argument Haldane and Arovas [24] show that
a physically sound relation is obtained from (17), if the re-
sponse function K is replaced by its average over the torus
0 < �1,�2 < 2⇡ of the twist angles, i.e. by the Chern
number C(0).
From the mathematical point of view the Chern num-

ber of this spin system is equivalent to the TKNN index of
the Quantum Hall E↵ect (QHE) [25], and as in the QHE
the spin 1/2 excitations are separated from the S = 0
ground state by a finite gap (see �S=1/2 in Fig. 3). But
there are very definite and crucial di↵erences: i) In our
spin system, contrary to the QHE, the parity and time
reversal invariance are not externally broken. Eigenstates
with positive and negative Chern number are degenerate.
ii) In each spin sector there is a continuum of excitations
adjacent to the ground state and there may be couplings
between the two sectors under the e↵ect of an external
magnetic field. So it is di�cult to imagine how the micro-
scopic rigidity associated with the Chern number could
become manifest on a macroscopic level. iii) Finally our
numerical results seem to indicate that the creation of two
spin 1/2 excitations is less favorable than the creation of
a spin 1 excitation: 2E�S=1/2 > E�S=1 (see Fig. 3), but
because of the uncertainties in the extrapolation proce-
dure, this last result is not entirely reliable. The question
of whether the excitation of two spin 1/2 entities is ener-
getically more or less favorable than the creation of one
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Fig. 3. E�S=1/2: energy for creating one S = 1/2 excitation.
This energy is the di↵erence between the interpolated ground
state energies for S = 1/2 and S = 0 (see Fig. 1). E�S=1:
energy for creating one S = 1 excitation in the even samples
(magnetic gap). The graphs shown in this figure are based on
polynomial interpolations between the numerical data. Con-
tinuations of these graphs to larger values of N (N > 27 for
E�S=1/2 and N > 36 for E�S=1) are unwarranted.

S = 1 excitation is indeed an major open point. In the
first case the spin 1/2 excitations would be true thermo-
dynamic excitations, in the opposite case they could only
appear as metastable excitations in sophisticated dynamic
experiments. Whatever the answer to this last question
may be, the KHA is certainly not a system which fits eas-
ily into the frame of standard continuum chiral theories.
In any case the symmetries of these spin 1/2 excitations
are features that will survive in the thermodynamic limit
although the states may be metastable in this limit. We
may hypothesize that their non-zero Chern number, since
it is a quantum number, will also survive in the thermody-
namic limit. In this picture the chiral S = 1/2 states of the
KHA can certainly not be viewed as simple bound states
of three spins 1/2 in a sea of singlets: a cluster of three
spins in its S = 1/2 ground state has indeed a nonzero
expectation value of the chirality ⌅123 = ±

p
3/2, but its

Chern index is zero. The Chern number is a measure of
a topological rigidity of the N-particle states, which is by
itself unique. To our knowledge the KHA is the first sys-
tem with a Hamiltonian that does not break parity and
time reversal invariance, where a non-zero Chern number
has been observed.

5 Conclusion

In conclusion, our numerical study of the low lying spectra
of the spin 1/2 KHA leads us to assert that this system is

Lecheminant et. al. PRB 56 2521
Waldtmann et. al. EPJB 2 501
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Kagome lattice: history of the ground state

22

Supplementary Material:
Spin Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet

Simeng Yan, David A. Huse, and Steven R. White

A. DMRG methods

The density matrix renormalization group [5, 6] is ideal
for one dimensional systems, but also has long been used
for finite-width 2D strips or cylinders [27, 28]. To maintain
a constant accuracy as the width of the system is increased,
the number of states kept per block m must increase expo-
nentially, increasing the computer resources needed, and thus
limiting the maximum width feasible. High accuracy is re-
quired to distinguish between phases in the KHA, so we have
limited the systems studied to a maximum circumference of
12 lattice spacings, for which we can obtain a relative error of
less than 0.1% in extrapolated energy. We are restricted by our
current computational facilities to a maximum m ∼ 8000. In
most cases we systematically increase m every other sweep.
To find the most accurate energy, with rough error estimates,
we extrapolate the energy as a function of truncation error, us-
ing the second sweep of each pair with the same m, to zero
truncation error, using a linear fit for the largest several m val-
ues. This is a fairly standard DMRG procedure which usually
works quite well.

We use a cylindrical geometry for most of our calculations,
which we label by the cylinder’s orientation and circumfer-
ence. We put the circumference of the cylinder either along or
close in orientation to the y-axis. For example, in our notation
YC8 indicates a cylinder (C) in which one of the three bond
orientations is along the y-axis (Y), and the circumference is 8
lattice spacings. For cylinders oriented with some bonds along
the x-direction (X), the circumference is measured in units of√

3/2 times the lattice spacing, so that XC8 has a circumfer-
ence of c = 4

√
3 lattice spacings. For cylinders which con-

nect periodically around the cylinder’s axis with a shift, the
shift is added to the label: e.g. YC9-2 indicates a YC9 cylin-
der which is connected with a horizontal shift at the “seam” of
two units; YC9-2 has a circumference of c = 2

√
21. In these

cases with shifts the kagome lattice is wrapped on the cylinder
in a spiral.

There are two key issues that complicate the calculations:
1) the geometry of the cluster—the circumference, the pe-
riodic shift, the boundary conditions at the open ends—can
affect the ground and excited states significantly; and 2) on
the wider systems, DMRG can get stuck in metastable states.
Both of these problems can be surmounted, but it is necessary
to study a wide variety of systems and initial states to find out
which geometries do not frustrate the lowest energy states and
how to prepare initial states which permit the algorithm to find
the ground state. The results presented here are a very small
fraction of the total number of systems studied, and have been
selected to illustrate the key behavior most clearly.

 0.0
-0.6

 0.0
-0.02

FIG. S1: Valence bond pattern for the left two-thirds of a 208 site
XC8 cylinder. The width of the lines is proportional to |⟨S⃗i · S⃗j⟩|
(top two panels and left key) or |⟨S⃗i · S⃗j⟩ − eα| (bottom panel, right
key), with dashed lines indicating the quantity is positive. Here α
signifies bond direction and the approximate bulk bond correlations
are eα = −0.223 for horizontal bonds and −0.217 for diagonal. The
top panel shows sweep 6 with m = 200, the middle panel sweep
14 with m = 600, and the bottom panel the final sweep 34 with
m = 8000. Near m = 2400 (not shown), the energy drops fairly
abruptly by about 0.1%, and the HVBC is replaced by a spin liquid
state. The line widths have been constrained to a maximum near the
left edge, bottom panel.

B. The Spin Liquid versus the Honeycomb Valence Bond
Crystal (HVBC)

In this section we present some of the key evidence that the
ground state of the KHA is a spin liquid, and specifically not
the HVBC. To rule out the HVBC on the cylinders we have
studied, despite the possibility of metastable states, a valu-
able technique is to favor the HVBC, both in initial state and
boundary conditions. In spite of thus favoring it, the HVBC is
unstable in the resulting simulations, which is strong evidence
against an HVBC ground state. A typical example is shown
in Fig. S1. In this simulation the cylinder circumference and
wrapping vector accommodate the HVBC state, both ends of
the cylinder were trimmed to accommodate and pin the HVBC
state, the initial state was prepared in the HVBC state, and
the ordering of the sites of the cylinder used by the DMRG
followed an irregular path which always makes any two sites
sharing a valence bond in the HVBC adjacent. (This biased

Still considerable debate, however: not SU(2) (uniform RVB) — either U(1) or Z2 
— in the RVB picture, these correspond to different weightings of bonds

In 2011, state-of-the art DMRG simulations suggested strongly fluctuating SL with 
weak dimer correlations:

Yan, Huse and White Science 332 1173
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States separated by minute energies (near a QCP), so interactions beyond J can 
drastically alter the ground state. These are inevitable in real systems…

Liao et. al. PRL 118 137202
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Regardless what the actual ground-state is, the static structure factors are nearly 
identical:

We also consider the static spin structure factor Sð ~qÞ ¼
1
N

P
ije

i ~q$ð ~ri%~rjÞh ~Si $ ~Sji, ~q in units of basis vectors ( ~b1, ~b2) of
the reciprocal lattice. The spectral weight is concentrated
evenly around the edge of the extended Brillouin zone,
with not very pronounced maxima on the corners of the
hexagon (Fig. 3). Results for large cylinders agree well
with ED results for tori up to 36 sites [44]. All our Sð ~qÞ are
in accordance with the prediction for a Z2 QSL [27].

We also find antiferromagnetically decaying, almost
direction-independent dimer-dimer correlations, for
which, again, an exponential fit is favored [Fig. 4(b)], in
agreement with a singlet gap. Our data do not support the
algebraic decay predicted [23] for an algebraic QSL.

Chiral correlation functions [40] hCijkClmni ¼
h ~Si $ ð ~Sj & ~SkÞ $ ~Sl $ ð ~Sm & ~SnÞi, where the loops consid-
ered are elementary triangles, did not show significant
correlations for any distance or direction and decay expo-
nentially (Fig. 5), faster than the spin-spin correlations.
Expectation values of single loop operators Cijk vanish, as
expected for finite size lattices. Chiral correlators for other
loop types and sizes decay even faster. Our findings do not
support chiral spin liquid proposals [21,22,34].

Topological entanglement entropy.—To obtain direct
evidence regarding a topological state, we consider the
topological entanglement entropy [73–75]. For the ground
states of gapped, short-ranged Hamiltonians in 2D, entan-
glement entropy scales as S ’ c, if we cut cylinders
into two, with corrections in the case of topological
ground states [76]. We examine Renyi entropies S! ¼
ð1% !Þ%1log2tr"

!, 0 ' !<1, where " is a subsystem
density matrix. Scaling is expected as S! ’ #c% $, where
# is an !-dependent constant. $, the topological entangle-
ment entropy, is independent of! [77–79] and depends only
on the total quantum dimensionD as $ ¼ log2ðDÞ [73,74].
In our mappings, DMRG gives direct access to density
matrices of cylinder slices. We calculate S! for cylinders
of fixed c and extrapolate in L%1 to L ! 1; a linear
extrapolation in c ! 0 yields $. Results are 1D mapping
independent. We show intermediate values of ! (Fig. 6),
which all show a clearly finite value of $, with a value very
consistent with $ ¼ 1; large-! results agree. Small-!
results are unreliable, as DMRG does not capture the tail

FIG. 3 (color online). Two static structure factors Sð ~qÞ; kx, ky
in units of reciprocal lattice basis vectors. Results are indepen-
dent of the choice of 1D mapping (not shown).
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FIG. 4 (color online). Log-linear plots of the absolute value of
the Fig. 4(a) spin-spin and Fig. 4(b) dimer-dimer correlation
functions versus the distance x ¼ ji% jj for a XC12 [Fig. 4(a)]
and a YC8 [Fig. 4(b)] sample along one lattice axis with
exponential and power law fits. An x%4 line is shown as a guide
to the eye.
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FIG. 2 (color online). Plot of the bulk triplet gap for infinitely
long cylinders versus the inverse circumference c in units of
inverse lattice spacings with an empirical linear fit to the largest
cylinders, leading to a spin gap estimate of 0.13(1).
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FIG. 4. (Color online) Intensity plot of the static spin structure

factor S(q) on the 192-site cluster.

algebraic spin liquid can in fact occur as a true ground state of
the spin-1/2 QHAF on the kagome lattice. Very recently, other

approximate approaches proposed alternative ground states
with or without broken symmetries.61–63

We would like to mention that a further improvement of
the variational wave function would require an introduction of
local monopole fluctuations over the static mean-field state
of Eq. (3). On small system sizes, such fluctuations were
shown to lower the energy of the system within the Schwinger
boson approach.64 However, on large clusters, it is extremely
difficult to construct workable wave functions with (even
static) topological defects. It is worth mentioning that the
possibility of another energetically competing state entering
the game remains open; this is a chiral Z2 topological spin
liquid65 which has been proposed as the ground state within a
Schwinger boson mean-field theory,66 but whose projected
wave-function study remains to be done on large clusters
such as 48 sites so as to enable a comparison with the U (1)
Dirac spin liquid. Finally, the projected wave functions can
also be constructed for chiral valence-bond crystal phases and
it would be interesting to study their energetics, especially
in light of the fact that they have been proposed as a
competing ground state using generalized quantum dimer
models.28
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Kagome lattice: dynamical structure factor
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Non-interacting spinon limit: strongly dispersing continuum (one neutron, two 
spinons). Introduce interactions between spinons and other excitations: broaden. 
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Figure 1 | Density plots of the the dynamic spin-structure factor S(k,!) for the Q1 = Q2 spin liquid state. a–c, Plots of S(k, !) at zero temperature for
di�erent spinon–vison interaction strengths as a function of frequency and momentum along the high-symmetry directions between the 0, M and K points
of the extended Brillouin zone, indicated by the blue arrows in e. a, Non-interacting spinons. Note that in the Q1 =Q2 state two of the three spinon bands
are degenerate, whereas the third, highest energy spinon band is flat. This flat spinon band gives rise to the horizontal feature at !'0.75J. b, Spinon–vison
interaction g0 =0.2. c, Spinon–vison interaction g0 =0.6. d,e, S(k, !) for non-interacting spinons at fixed frequency !/J=0.4 (d) and !/J=0.85 (e). The
elementary Brillouin zone of the kagome lattice is indicated by a dashed hexagon in e. Note the sharp onset of the two-spinon continuum for
non-interacting spinons in a and d, which is washed out when interactions with visons are accounted for. All data in this figure were calculated for
|Q1|=0.4 and the spinon gap was fixed at �s '0.05J. The vison gap is set to �v =0.025J in b and c.

hopping.As only the gap to the lowest vison band is small, we neglect
the e�ects of the other two bands in the following.

The coupling between spinons and visons is a long-range
statistical interaction (a spinon picks up a Berry’s phase of ⇡ when
encircling a vison20), which cannot be expressed in the form of a
simple local Hamiltonian in the vortex representation. However, the
fact that visons on the dice lattice are non-dispersing comes to the
rescue here. Because these excitations are localized and can only be
created in pairs, the long-range statistical interaction is e�ectively
cancelled. Indeed, if a spinon is carried around a pair of visons,
it does not pick up a Berry’s phase. This is in precise analogy to
an electron carried around a pair of superconducting Abrikosov
vortices, where the total encircled flux is 2⇡ and thus no phase is
accumulated. The vison pairs are excited locally by a spinon, and
thus it is reasonable tomodel the spinon–vison interaction by a local
energy–energy coupling, neglecting the long-range statistical part.
Accordingly we choose the simplest, gauge-invariant Hamiltonian
of bosonic spinons on the kagome lattice coupled to a single, non-
dispersing vison mode on the dual Dice lattice

H = Hb +
X

i

�v�i�i

+g0�v

X

i2Dice3
`,m25i

�i�i
�
"↵�Q⇤

`mb`↵bm� +h.c.
�

(2)

Here, the real field �i describes visons living on the dice lattice
sites i, g0 denotes the spinon–vison coupling strength and �v is the
vison gap. The sum in the interaction term runs only over the three-
coordinated Dice lattice sites i and couples the spinon bond energy
on the triangular kagome plaquettes to the local vison gap at the
plaquette centre. Further terms, where spinons on the hexagonal

kagome plaquettes interact with visons at the centre of the hexagons
are allowed, but neglected for simplicity.

A more detailed discussion of this interaction term can be
found in the Supplementary Methods. We are going to compute
the dynamic structure factor S(k,!) using the model equation (2)
for a particular Z2 spin liquid state that has been identified in
ref. 2. For the nearest-neighbour kagome antiferromagnet there
are two independent bond expectation values Qij 2 {Q1,Q2} and
the two distinct, locally stable mean-field solutions have Q1 =Q2
or Q1 = �Q2. The Q1 = Q2 state has flux ⇡ in the elementary
hexagons, whereas the Q1 =�Q2 state is a zero-flux state. During
the remainder of this article we focus only on the Q1 =Q2 state,
as it gives rise to a little peak in S(k,!) at small frequencies at
the M point of the extended Brillouin zone, in accordance with
experimental results. Results for the other state are discussed in the
Supplementary Methods. Two other bosonic Z2 states have been
identified on the kagome lattice3, but we refrain from computing
the structure factor for these states, because both have a doubled
unit cell, which complicates the calculations considerably.

Dynamic structure factor
Neutron scattering experiments measure the dynamic structure
factor

S(k,!)= 1
N

X

i,j

eik·(Ri�Rj)

Z
dt e�i!t hSi(t) ·Sj(0)i

which we are going to compute for the model presented in
equation (2). Here Ri denotes the position of lattice site i.
Note that S(k, !) is periodic in the extended Brillouin zone
depicted in (Fig. 1e). After expressing Si ·Sj in terms of Schwinger
bosons and diagonalizing the free spinon Hamiltonian with
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hopping.As only the gap to the lowest vison band is small, we neglect
the e�ects of the other two bands in the following.

The coupling between spinons and visons is a long-range
statistical interaction (a spinon picks up a Berry’s phase of ⇡ when
encircling a vison20), which cannot be expressed in the form of a
simple local Hamiltonian in the vortex representation. However, the
fact that visons on the dice lattice are non-dispersing comes to the
rescue here. Because these excitations are localized and can only be
created in pairs, the long-range statistical interaction is e�ectively
cancelled. Indeed, if a spinon is carried around a pair of visons,
it does not pick up a Berry’s phase. This is in precise analogy to
an electron carried around a pair of superconducting Abrikosov
vortices, where the total encircled flux is 2⇡ and thus no phase is
accumulated. The vison pairs are excited locally by a spinon, and
thus it is reasonable tomodel the spinon–vison interaction by a local
energy–energy coupling, neglecting the long-range statistical part.
Accordingly we choose the simplest, gauge-invariant Hamiltonian
of bosonic spinons on the kagome lattice coupled to a single, non-
dispersing vison mode on the dual Dice lattice

H = Hb +
X
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+g0�v
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i2Dice3
`,m25i
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(2)

Here, the real field �i describes visons living on the dice lattice
sites i, g0 denotes the spinon–vison coupling strength and �v is the
vison gap. The sum in the interaction term runs only over the three-
coordinated Dice lattice sites i and couples the spinon bond energy
on the triangular kagome plaquettes to the local vison gap at the
plaquette centre. Further terms, where spinons on the hexagonal

kagome plaquettes interact with visons at the centre of the hexagons
are allowed, but neglected for simplicity.

A more detailed discussion of this interaction term can be
found in the Supplementary Methods. We are going to compute
the dynamic structure factor S(k,!) using the model equation (2)
for a particular Z2 spin liquid state that has been identified in
ref. 2. For the nearest-neighbour kagome antiferromagnet there
are two independent bond expectation values Qij 2 {Q1,Q2} and
the two distinct, locally stable mean-field solutions have Q1 =Q2
or Q1 = �Q2. The Q1 = Q2 state has flux ⇡ in the elementary
hexagons, whereas the Q1 =�Q2 state is a zero-flux state. During
the remainder of this article we focus only on the Q1 =Q2 state,
as it gives rise to a little peak in S(k,!) at small frequencies at
the M point of the extended Brillouin zone, in accordance with
experimental results. Results for the other state are discussed in the
Supplementary Methods. Two other bosonic Z2 states have been
identified on the kagome lattice3, but we refrain from computing
the structure factor for these states, because both have a doubled
unit cell, which complicates the calculations considerably.

Dynamic structure factor
Neutron scattering experiments measure the dynamic structure
factor

S(k,!)= 1
N

X

i,j

eik·(Ri�Rj)

Z
dt e�i!t hSi(t) ·Sj(0)i

which we are going to compute for the model presented in
equation (2). Here Ri denotes the position of lattice site i.
Note that S(k, !) is periodic in the extended Brillouin zone
depicted in (Fig. 1e). After expressing Si ·Sj in terms of Schwinger
bosons and diagonalizing the free spinon Hamiltonian with
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Z2 QSL S(Q,ω) 

Free spinons Coupled spinons

Spinons coupled to visons - 
topological singlet excitations.

Punk et. al. Nature Phys. 10 289; Dodds et. al. PRB 88 224413



Cu2+ minerals as realisations of the kagome 
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Kagome lattice materials

27

How can we realize a kagome lattice material? If we consider inorganic materials 
with TM octahedra…

Most materials studied so far contain some variation on this motif…



Sometimes nature gets in the way…
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Kagome lattice materials
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Material SG θ Order Reference(s)

Volborthite
Cu3V2O7(OH)2.2H2O

C2/m -115 K 1 K
Z. Hiroi et. al., JPSJ 70, 3377

M. Yoshida et. al., PRL 103, 077207
G. J. Nilsen et. al., PRB 84, 172401

Herbertsmithite
β-Cu3Zn(OH)6Cl2

R3̅m -240 K < 50 mK
M. P. Shores et. al. JACS 127, 13462

de Vries et. al. PRL 103, 237201
T. Han et. al. Nature 492, 406

KCu3As2O7(OD)3 C2/m +13.4 K 7 K Y. Okamoto et. al. JPSJ 81, 033707 

Bayldonite
PbCu3(AsO4)2(OH)2

C2/c +49 K < 2 K ? Unpublished (H. Ishikawa, Y. 
Okamoto)

Vesignieite
BaCu3(VO4)2(OH)2

C2/m -59 K 7 K Y. Okamoto et. al., JPSJ 78, 033701
M. Yoshida et. al., JPSJ 82, 013702

Edwardsite
Cu3Cd2(SO4)2(OH)6.4H2O

P21/c - 50 K 4.3 K H. Ishikawa et. al. JPSJ 82, 063710

Kapellasite
ɑ-Cu3Zn(OH)6Cl2

R3̅m 0 K < 50 mK Colman et al., Chem. Mater 20 6897 
Fåk et. al. PRL, 109 137208

Cu3Zn(OH)6(SO4) P21/a - 79 K < 50 mK Y. Li et. al., cond-mat:1310.2795



What is the nature of the QSL in 
Herbertsmithite?
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Herbertsmithite, Cu3Zn(OH)6Cl2

31

θ = -240 K, J = 180 K, TN < 50 mK 

M. P. Shores et. al. JACS 127 13462 

R-3m
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Herbertsmithite: high-energy excitations

32

High-energy S(Q,⍵) consistent with very short-range correlations even at 50 mK!

IN4, ILL, 50 mK

corresponds to 30% to 50% of the sum rule sðsþ 1Þ for the
spins on the kagome lattice.

In the raw IN4 data the dynamic correlations at Q<
1:8 !A$1 persist up to 30 K while the magnetic scattering at
the maximum of the peak at 1:3 !A$1 changes very little up
to 120 K [Figs. 1(c) and 2(b)]. The intensity at the energy
loss side (!< 0) in the TOF data obeys detailed balance at
all temperatures. This combined with the magnetic scat-
tering intensity and temperature dependence in theD7 data
implies that at the elastic line there must be increased
magnetic scattering, but still with the same Q dependence.
These (quasi) static magnetic correlations are reduced with
a shift of intensity to lower Q as the temperature is in-
creased, in what looks like spinon excitations in the D7
data at 10 K [Fig. 1(a)].

The above observations complement previous neutron
spectroscopy results on herbertsmithite [20], which show
the inelastic magnetic scattering cross section is energy
independent between 0.8 and 2 meV apart from a weak
field-dependent peak which is due to the weakly-coupled
Cu2þ spins on Zn sites. The Q dependence in this energy
range is not peaked at 1:3 !A$1 which is due to the single
ion contribution from antisite spins. This contribution also
needs to be added to Eq. (1) to fit theD7 data. The absence
of a peak around the edge of the first Brillouin zone in
Ref. [20] down to 35 mK implies there is no significant
increase of the dynamic magnetic correlations over 3 or-
ders of magnitude in temperature.

At Q> 1:8 !A$1 and for T > 30 K the inelastic scatter-
ing is increasingly dominated by phonons. The tempera-
ture dependence of phonon scattering can in general be
calculated from a temperature independent dynamic sus-
ceptibility using the fluctuation dissipation theorem. The
temperature independence of the magnetic scattering ob-
served at low Q prompted us to fit the temperature depen-
dence of each pixel in SðQ; !;TÞ [Figs. 3(a) and 3(b) for
T ¼ 2 K and 120 K, respectively] as the sum of a tem-
perature independent component SAFðQ; !Þ and a compo-
nent following linear response "00ðQ; !Þ,

SðQ; !;TÞ ¼ SAFðQ; !Þ þ ð1$ e$!=kBTÞ$1"00ðQ; !Þ: (2)

The SAFðQ; !Þ and "00ðQ; !Þ resulting from the fit are
shown in Figs. 3(c) and 3(d), respectively. As expected,
SAFðQ; !Þ corresponds to the raw data from IN4 at low Q
and T < 60 K and there is a good overall agreement with
the structure factor of Eq. (1) [Fig. 4(a)] added to a constant
background. Phonon dispersion originating from the nu-
clear Bragg peaks is on the other hand clearly visible in
"00ðQ; !Þ. The excellent fit for all data at 6 different tem-
peratures, as illustrated in Fig. 4(b) for a small sample of
points, confirms that the magnetic correlation length does
not diverge as the temperature is lowered and that these
dynamic correlations persist up to at least 120 K. The
maximum in "00 and SðQ; !Þ around 7 meV that extends

to Q< 1:8 !A$1 gives the impression of an increase in
magnetic scattering at ðQ; !Þ ¼ ð1:3 !A$1; 7 meVÞ. This
signal in "00 at low Q is most likely due to some weak
multiple scattering at IN4 because it was not observed in
the MARI and IN22 data.
Hence, we found that (1) At low frequencies (!<

2 meV) there is a shift of intensity to lower Q as the tem-
perature increases, which could be due to (gapless) spi-
nons. Spinons then also account for the nonzero magnetic
susceptibility as measured with 17O NMR [24]. (2) There

(c)

1

4

7

10

(m
eV

)
(m

eV
)

0 1 2 3 4 5

Q (Å−1)
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FIG. 3 (color online). The scattering cross section SðQ; !Þ
of at 2 K (a) and 120 K (b). The intensity scale is
mb sr$1 meV$1 f:u:$1. The elastic powder diffraction pattern is
also shown in (b). Panel (c) and (d) show respectively SAF and
"00. The white band at low Q is a gap between detectors. Some
increase in intensity in SAF is observed at higher energies but this
is likely due to the direct beam and larger error bars. As shown in
Fig. 4(a) the increase in intensity is only very small.
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the maximum of the peak at 1:3 !A$1 changes very little up
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loss side (!< 0) in the TOF data obeys detailed balance at
all temperatures. This combined with the magnetic scat-
tering intensity and temperature dependence in theD7 data
implies that at the elastic line there must be increased
magnetic scattering, but still with the same Q dependence.
These (quasi) static magnetic correlations are reduced with
a shift of intensity to lower Q as the temperature is in-
creased, in what looks like spinon excitations in the D7
data at 10 K [Fig. 1(a)].

The above observations complement previous neutron
spectroscopy results on herbertsmithite [20], which show
the inelastic magnetic scattering cross section is energy
independent between 0.8 and 2 meV apart from a weak
field-dependent peak which is due to the weakly-coupled
Cu2þ spins on Zn sites. The Q dependence in this energy
range is not peaked at 1:3 !A$1 which is due to the single
ion contribution from antisite spins. This contribution also
needs to be added to Eq. (1) to fit theD7 data. The absence
of a peak around the edge of the first Brillouin zone in
Ref. [20] down to 35 mK implies there is no significant
increase of the dynamic magnetic correlations over 3 or-
ders of magnitude in temperature.

At Q> 1:8 !A$1 and for T > 30 K the inelastic scatter-
ing is increasingly dominated by phonons. The tempera-
ture dependence of phonon scattering can in general be
calculated from a temperature independent dynamic sus-
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SAFðQ; !Þ corresponds to the raw data from IN4 at low Q
and T < 60 K and there is a good overall agreement with
the structure factor of Eq. (1) [Fig. 4(a)] added to a constant
background. Phonon dispersion originating from the nu-
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maximum in "00 and SðQ; !Þ around 7 meV that extends

to Q< 1:8 !A$1 gives the impression of an increase in
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signal in "00 at low Q is most likely due to some weak
multiple scattering at IN4 because it was not observed in
the MARI and IN22 data.
Hence, we found that (1) At low frequencies (!<
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perature increases, which could be due to (gapless) spi-
nons. Spinons then also account for the nonzero magnetic
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Q (Å−1)

0

7.5

15

(a)
0 2π/a 4π/a

−5

−2

1

4

7

10

(m
eV

)
(m

eV
)

(b)
0 2π/a 4π/a

0

15

30

FIG. 3 (color online). The scattering cross section SðQ; !Þ
of at 2 K (a) and 120 K (b). The intensity scale is
mb sr$1 meV$1 f:u:$1. The elastic powder diffraction pattern is
also shown in (b). Panel (c) and (d) show respectively SAF and
"00. The white band at low Q is a gap between detectors. Some
increase in intensity in SAF is observed at higher energies but this
is likely due to the direct beam and larger error bars. As shown in
Fig. 4(a) the increase in intensity is only very small.

0 1 2 3 4

Q ( Å-1)

0

4

8

12

S
m

ag
 (m

B
 S

t.-1
 m

eV
-1

 fu
.-1

) SAF  4 - 5 meV
SAF  6 - 7 meV
SAF  8 - 10 meV

1 10 100
T (K)

S(Q = 0.91)
S(Q = 1.39)
S(Q = 1.47)
S(Q = 3.55)
S(Q = 4.03)

(a) (b)

FIG. 4 (color online). (a) The Q dependence in SAFðQ; !Þ for a
number of energy transfers. (b) The temperature dependence for
a number of points in SðQ; ! ¼ 4 meVÞ and fits to the data using
Eq. (2).

PRL 103, 237201 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 DECEMBER 2009

237201-3

No sign of gap down to ~ 3 meV.

M. A. de Vries GJN et. al. PRL 103 237201 
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Figure 3 | Qualitative comparison between experimental measurements1 and our theoretical results for the dynamic structure factor S(k,!).
a,b, Experimental data at fixed frequency are shown for !=0.75 meV (a) and !=6 meV (b). c,d, Theoretical results for the Q1 =Q2 spin liquid at fixed
frequency are plotted for !=0.37J (c) and !=0.6J (d). The extended Brillouin zone is indicated by the dashed hexagons. Note that the peak at the M
point at low frequencies, as well as the flatness of S(k, !) between the M and K points at higher frequencies is captured by our theory. e,f, Cuts of our
theoretical results for S(k, !) along high-symmetry directions at di�erent frequencies are plotted between the M and K point (e), as well as between the 0

and M point (f), again showing the peak at the M point at low frequencies. g, Details of the calculated structure factor as a function of frequency for various
momenta between the M (bottom curve) and K point (top curve). Note that all curves in g are shifted by 0.12 J with respect to each other for better
visibility. All theoretical data shown was computed for the Q1 =Q2 state with a spinon–vison interaction strength g0 =0.6 and other parameters as
in Fig. 1.

spinon bands come in three degenerate pairs owing to the SU(2) spin-symmetry.
Furthermore, note that the flat vison band is not renormalized at arbitrary order
in the spinon–vison coupling.

We emphasize here that a self-consistent computation of the spinon
self-energy is necessary, because the real part of 6(k,!) is large and broadens the
spinon bands. A non-self-consistent computation thus leads to sharp spinon
excitations above the bare spinon band, which are unphysical as they would decay
immediately via vison pair production. A di�erent approximation, which
circumvents this problem, would be to calculate 6(k,!) non-self-consistently and
neglect the real part completely. This approximation violates sum rules however,
as the integrated spectral weight of the spinon is no longer unity (for a detailed
discussion, see the Supplementary Methods).

Note that we do not determine the parameters |Q1| and � variationally.
Instead, we use them to fix the spinon gap as well as the spinon bandwidth. |Q1|
is restricted to values between 0 and 1/

p
2 and quantifies antiferromagnetic

correlations of nearest-neighbour spins (|Q1|=1/
p
2 if nearest-neighbour spins

form a singlet). All data shown in this paper was computed for |Q1|=0.4, and �

has been adjusted such that the spinon gap takes the value �s/J '0.05. As
mentioned in the introduction, we assume that the vison gap �v is small
owing to evidence of proximity to a VBS state, and we chose �v/J =0.025 for
all data shown in this Article—namely, the vison gap is roughly half the
spinon gap.

Received 23 August 2013; accepted 10 January 2014;
published online 9 March 2014; corrected after print 22 April 2016
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High-energy S(Q,⍵) consistent with very short-range correlations even at 50 mK!

MACS, NIST, 1.6 K

Calculation for Z2 spin liquid with spinon-vison interactions agrees qualitatively!
Punk et. al. Nature Phys. 10 289 

Han et. al. Nature 492 406 



TUM, 20/11/2017

Herbertsmithite: a true QSL?

34

These look like encouraging signs of a QSL, but there are a few caveats…

Lack of inversion centre means 
Dzyaloshinskii-Moriya allowed:

ESR suggests Dz = 15 K ~ 0.08 J

D · Si ⇥ Sj

P. Mendels, F. Bert / C. R. Physique 17 (2016) 455–470 465

Fig. 16. Theoretical T = 0 phase diagram of the KHAF as a function of the strength of DM interaction, D/ J . The Néel order parameter has been calculated 
by exact diagonalizations. The spin gap in the spin liquid phase is issued from DMRG calculations while the dashed line gives a sketch of its evolution. 
Adapted from Ref. [5].

the order of 0.1 J , but g factor anisotropies from that analysis seem to be too high to fit with the ESR results. Attributing 
the whole ESR linewith to such an anisotropy rather gives an upper bound of 0.06 J [66]. One can certainly conclude that 
such anisotropies are both present and constitute one of the major deviations to the Heisenberg model that has to be kept 
in mind in the comparison between models and low-T experimental results.

Further-neighbor interaction This is a deviation to the Heisenberg model which has been up to now overlooked. Kapellasite, 
a polymorph of herbertsmithite, has a very similar kagome plane structure where Cu–OH–Cu bonds and angles vary little 
with respect to Herbertsmithite [67,68]. Although this has a drastic effect on the first-neighbors interaction that switches 
from anti- to ferro-magnetic, it is interesting to consider further neighbor interactions that should be very similar in the 
two compounds. The second neighbor one appears to be a negligible correction as compared to the along-diagonal of the 
hexagon antiferromagnetic interaction ∼0.1 J [69]. One can note that this adds up to the NN frustrating interaction and 
should not therefore much impact a potential spin-liquid behavior.

Anti-site mixing? Finally, we have already mentioned the occupation of the Zn site by Cu. There is a still open debate 
between the possibility of intersite mixing leading to a ∼6% spin vacancies in the kagome planes and defectless kagome 
planes. While the former has been suggested by intra-plane local 17O NMR measurements [70] on powder samples, X-ray 
anomalous scattering on single crystals speaks in favor of full occupancy, i.e. perfect kagome planes, which somehow con-
tradicts the perfect stoichiometry deduced from ICP–AES experiments on the same samples [58]. In any case, as far as we 
know, such a weak level of dilution in the kagome lattice should not alter its fundamental properties.

Conclusion One can safely argue that deviation to the Heisenberg case occurs at a maximum level of 0.1 J . This calls for 
some care in interpreting experiments with existing models and is a clear signal that given the low symmetry of kagome 
compounds, a test of theoretical models along these perturbations is likely the next step to undertake.

4.4. A gapless ground state?

Given the dominant contribution of out of plane defects in macroscopic measurements, only site-selective probes can 
give some insight into the thermodynamic response of the kagome planes. There are certainly two ideal probes of the 
kagome susceptibility, Cu and O nuclei. Unfortunately, Cu has never been detected in the whole T-range and the detection 
of a signal that was reported in [72] is certainly encouraging, but whether Cu, either in-plane or out-of-plane, is detected 
is still an open question. O therefore appears to be the most secure probe. From a simple comparison to other probes at 
high-T , where the macroscopic susceptibility is dominated by the kagome planes, O is found to be one order of magnitude 
at least better coupled than Cl [72] and two orders of magnitude better than implanted muons in µSR experiments [73].

4.4.1. Kagome susceptibility from 17O NMR [70,71]
Tracking the position of the main resonance [70] gives the shift, hence one can extract the hereafter called “intrinsic” 

susceptibility from 300 K ∼ 1.7 J down to 0.45 K ∼ J/400. A broad maximum is observed between the high-T Curie–Weiss 
regime and the low-T regime where the susceptibility monotonously decreases between J/3 and J/20 to finally level-off at 
a finite value within error bars. The latter are quite large at low-T given a sizable defect-induced line broadening so that this 

Dz

Dp

Zorko et. al. PRL 101 026405; Bert et. al. Reflets Phys. 37 4; Cepas et. al. PRB 78 140405
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Singh, PRL 104 177203

= 0.0 = 0.75

These look like encouraging signs of a QSL, but there are a few caveats…

~1 %, valence bond glass

15-19% Cu2+

0-6% Zn2+

Freedman et. al. JACS 132 16185
de Vries et. al. PRL 100 157205
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Low-energy S(Q,⍵) looks ungapped, although dominated by interplane defects

Defects weakly correlated, but can be decoupled with small magnetic field. 
Nilsen et. al. JPCM 25 106001 
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Single crystals add some detail to this picture.

(Lee et al., 2007). The inelastic measurements found that the
zero mode at about 1.3 meV for clinoatacamite is rapidly
suppressed as a function of x (Lee et al., 2007). For x ¼ 1,
only a broad continuum in both energy and momentum was
seen. Power law correlations as a function of energy were seen
at 35 mK (Helton et al., 2007) which subsequent measure-
ments found to exhibit quantum critical scaling, with the
imaginary part of χ going as ω−α tanhðω=βTÞ with α ¼ 2=3
and β ¼ 5=3 (Fig. 10, left) (Helton et al., 2010), although a
scale-free behavior was claimed earlier (de Vries et al., 2009).
Similar power laws were inferred by NMR (Imai et al., 2008;
Olariu et al., 2008) and were suggestive of the power law
correlations expected for a U(1) Dirac spin liquid (Ran et al.,
2007). Detailed INS studies at very low energies though were
consistent with defect behavior in this energy range, including
their Zeeman shift in an applied field (Nilsen et al., 2013).
The advent of single crystals has led to much richer results

(Han et al., 2012). For the most part, the spectra have a modest
dependence on both momentum and energy, in sharp contrast
to the magnonlike excitations and zero modes seen in
clinoatacamite (Fig. 11). This has led to the idea that this
represents a true spinon continuum [noting though that all
theoretical models that have such a continuum exhibit a much
stronger momentum and energy dependence than what is
observed (Punk, Chowdhury, and Sachdev, 2014)]. Above
1 meVor so, the momentum pattern is what one would expect
for near-neighbor AF correlations within the kagome plane
(Fig. 10, right), with a correlation length of the order of 3 Å,
although detailed fits indicate some contribution from longer-
range exchange. This is certainly consistent with ab initio
calculations of the exchange integrals (Jeschke, Salvat-Pujol,
and Valenti, 2013), which indicate a large near-neighbor AF
exchange (182 K), but a far weaker next-near-neighbor AF
exchange (3 K). But below 1 meV, the pattern becomes more
spotlike, with maxima at the center of the Brillouin zone
(Fig. 10, right). We focus on this point in the next section.

V. THE PHYSICS OF DEFECTS

A. Inelastic neutron scattering and NMR

Naively, one might expect the zone center INS maxima
below 1 meV (Han et al., 2012) to simply be a reflection of a
q ¼ 0 magnetic state, much like what is seen in the iron
jarosites (Grohol et al., 2005). That this is not the case is
shown by new INS data taken in the (HHL) scattering plane
(Fig. 12, bottom row) (Han, Norman et al., 2016). Here one
clearly sees a diffuse peak at ð0; 0; 32Þ. Such (00L) peaks are
inconsistent with the spins summing to zero on a kagome
triangle [in the iron jarosites, these peaks occur along (11L)
instead (Matan, 2007)]. Another possibility would be ferro-
magnetic planes coupled antiferromagnetically along thec axis,

(a)

(b)

(c)

FIG. 10. Left: The imaginary part of the momentum-integrated
dynamic spin susceptibility of herbertsmithite for various
temperatures, demonstrating quantum critical-like scaling. The
solid curve is the scaling function described in the text. From
Helton et al., 2010. Right: Momentum structure of the INS data
for single crystal samples at 1.6 K for three different energies.
Note the evolution from a near-neighbor dimer pattern to a more
spotlike pattern as the energy is reduced below 2 meV. From
Han et al., 2012.

(a)

(b)

FIG. 11. INS spectra of herbertsmithite at 1.6 K along the K −
Γ − K direction as a function of energy. Note that the intensity is
almost independent of energy and momentum, in sharp contrast
to the magnonlike excitations and zero modes seen in clinoata-
camite. This is evidence for a spinon continuum. From
Han et al., 2012.

FIG. 12. Momentum structure of the INS data at 0.4 and
1.3 meV for single crystal herbertsmithite at 2 K in the (HK0)
scattering plane (top row) and (HHL) scattering plane (bottom
row). The plots in the right column are the calculated structure
factor for near-neighbor AF correlations between copper defects
on the zinc sites, taking into account the copper form factor.
These correspond to correlations between the brown and the gray
sites of Fig. 1, which sit in successive triangular planes. From
Han, Norman et al., 2016.

M. R. Norman: Colloquium: Herbertsmithite and the search …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 041002-9

Antiferromagnetic coupling between interplane sites causes low-energy response. 
Han et. al. PRB 94 160409
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but this is highly inconsistent with the large in-plane AF
exchange interaction identified from various measurements.
One is then forced to conclude that this pattern has

something to do with the defects. Indeed, AF correlations
between near-neighbor defect sites (which sit in neighboring
triangular planes) give rise to such a pattern (Fig. 12, right
column) (Han, Norman et al., 2016). Such correlations can be
motivated by the known magnetic structure of clinoatacamite.
This implies that the copper defects on the zinc sites locally
distort the surrounding matrix (due to the Jahn-Teller effect).
This effect has been inferred as well from 35Cl NMR data (Imai
et al., 2011; Fu et al., 2015) and could be further investigated
by such techniques as the pair distribution function or extended
x-ray absorption fine structure (EXAFS). Exploiting the differ-
ing momentum dependences of the kagome and defect spins,
one can estimate that a spin gap of about 0.7 meVexists for the
kagome spins. The same value is found when modeling
momentum-integrated data as the sum of a damped harmonic
oscillator [previously used to model the defect spins in an
earlier INS study (Nilsen et al., 2013)] and a gapped kagome
contribution (Fig. 13) (Han, Norman et al., 2016).
About the same value for the spin gap was earlier estimated

from NMR data (Fu et al., 2015). This study found three
different oxygen sites, with site occupations based on earlier x-
ray studies (Freedman et al., 2010) found to be consistent with
the number of near-neighbor and next-near-neighbor oxygen
atoms about a given copper defect on the zinc sites, with the
majority of the oxygen sites (roughly 59%) being largely
unaffected by the defects [the same numberswere inferred from
earlier NMR studies as well (Olariu et al., 2008; Imai et al.,
2011)]. From this last type, one can estimate a kagome spin gap
of about 0.05J, roughly consistent with DMRG and exact
diagonalization studies of the Heisenberg kagome lattice and
consistent with the later INS studies mentioned earlier.

B. Quantum criticality versus random bonds

These findings touch on a long-standing debate in physics
concerning the quantum critical behavior observed by neu-
trons in several strongly correlated electron systems. The same
scaling function used to fit heavy fermion 5f materials

(Aronson et al., 1995) was also used by Helton et al.
(2010) to fit their INS data on herbertsmithite (Fig. 10, left).
In the heavy fermion field, it was advocated that defects
could cause this scaling by inducing a random distribution of
Kondo temperatures (Castro Neto, Castilla, and Jones, 1998),
and in fact the scaling form used by Helton et al. (2010) has
been connected to that of the random Heisenberg model by
Singh (2010). Detailed studies of the random Heisenberg
model on a kagome lattice have claimed to be consistent with
the herbertsmithite INS data, in particular, an energy indepen-
dent and relatively momentum independent continuum (with a
low energy intensity upturn) (Kawamura, Watanabe, and
Shimokawa, 2014), but such studies do not take into account
the intersite defect nature of the actual low energy data.What is
clear from the analysis of Han, Norman et al. (2016) is that the
kagome spins appear to be remarkably unaffected by the defect
spins, likely due to the fact that the probability that one has a
defect spin on both sides of a kagome spin is only about 2%.
This indicates that the kagome contribution to the INS data is
likely a pristine representation of an ideal kagome lattice,
making the case for a spinon continuum a reasonable one.
Although the momentum dependent correlations among the

defects are fascinating (who would have expected 3D correla-
tions for such a quasi-2D material?), the fact remains that it
would be nice to find a material analog where the defect
concentration was not so high. Unfortunately, data on the
magnesium variant of herbertsmithite (tondiite) appear to be
plagued by the same defect problems as its zinc sibling
(Kermarrec et al., 2011), somewhat surprising given its smaller
ionic radius. As mentioned earlier, the introduction of cadmium
makes things even worse because of its larger ionic radius
(McQueen et al., 2011).On the other hand, it is possible other 2+
ions would ameliorate these effects, so this is definitely worth
exploring.

VI. THE FUTURE

For experiment, there are several potential directions to
pursue. The first is to bring more techniques to bear. Many of
the probes used for the cuprates have yet to be performed for
herbertsmithite—the obvious examples are angle resolved
photoemission, x-ray absorption, scanning tunneling micros-
copy, infrared conductivity, and both electric and thermal
transport. As a consequence, the actual electronic structure of
herbertsmithite is not known. Although one might expect
many similarities to the cuprates, the fact that these materials
are hydroxychlorides instead of oxides means there will be
many differences as well. So far, Raman studies have
indicated a spin background somewhat reminiscent of cup-
rates (Wulferding et al., 2010), and the in-plane THz con-
ductivity sees field-independent power law behavior (Pilon
et al., 2013) as expected for a gapless (or near gapless) spin
liquid (Potter, Senthil, and Lee, 2013). Still, we have a long
way to go before we have as thorough an understanding for
herbertsmithite as we do for stoichiometric cuprates.
The second is the investigation of related materials. For

instance, there are a large number of compounds, particularly
minerals, which have been studied only from a crystallographic
point of view. As an example, the copper tellurium oxide
quetzalcoatlite Zn6Cu3ðTeO3Þ2O6ðOHÞ6ðAgxPbyÞClxþ2y is
composed of perfect copper kagome layers exhibiting AA
stacking (Burns et al., 2000).Unfortunately, the natural crystals

FIG. 13. Momentum-integrated INS data (Helton et al., 2010)
for herbertsmithite fit to a sum of a low energy damped harmonic
oscillator representing the defect spins (Nilsen et al., 2013) and a
gapped continuum representing the kagome spins. The spin gap
from the latter is 0.73 meV, close to that inferred from 17O NMR
data (Fu et al., 2015). From Han, Norman et al., 2016.

M. R. Norman: Colloquium: Herbertsmithite and the search …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 041002-10

1. Unclear whether spin gap is present or not - given large DM perturbation, 
expect gap to at least partially close.

2. If gap is present, VBG or Z2 QSL? Entirely depends on how many defects are 
present on the kagome lattice

466 P. Mendels, F. Bert / C. R. Physique 17 (2016) 455–470

Fig. 17. Thermal variation of the susceptibility of the kagome planes measured from the shift of the main 17O NMR line (red open symbols) compared to 
the macroscopic susceptibility (green solid line). The red dashed line is a guide to the eye for the low-T shift.

Fig. 18. Semi-log plot of the relaxation rates obtained for all probe nuclei, 17O, 63Cu and 35Cl. Inset: linear plot of T −1
1 with a power law fit for the low T

17O data. Adapted from Ref. [70,72].

data should rather be taken with some care. The behavior in the intermediate T -range can certainly be associated with a 
strengthening of the short-range antiferromagnetic correlations. Fig. 17 illustrates the huge difference between the intrinsic 
susceptibility of the kagome planes and the macroscopic susceptibility, which is dominated at low T by the inter-plane 
defects. The finite value of the susceptibility, if further confirmed, could be attributed to a singlet–triplet mixing induced by 
DM interactions. Yet, using the DM calculations in a dimer model [74] gives a strong indication that the DM interaction is 
not in an obvious manner the origin of the non-zero susceptibility at T = 0 and might point to an intrinsic gapless ground 
state for the KHAF. This calls for further realistic inclusions of the DM interaction into the kagome Heisenberg Hamiltonian.

Given the uncertainty on the low-T behavior of the susceptibility, the best way to probe the existence of a gap is to turn 
to the dynamical susceptibility measurements.

4.4.2. Dynamical susceptibility and exotic excitations
Both NMR T1 relaxation measurements [70,72] (Fig. 18) and inelastic neutron scattering (INS) [55,75] give also a strong 

support to a gapless scenario, at least in the field and temperature ranges that have been probed.
NMR T1 measurements taken using various probes agree well from 30 K down to 1.2 K clearly pointing to gapless 

magnetic excitations with a power law behavior T −1
1 ∼ T 0.71(5) .

INS data have been taken without any applied field down to 35 mK on powders [55] and down to 1.6 K on single 
crystals [76] synthesized at M.I.T., a major achievement of recent years. They consistently reveal that no gap larger than 
0.1 J can be detected in any direction of the Q -space. Per se, this is already a very strong result as one might expect that 
only some directions of the reciprocal space could be gapless but the most striking result is the indication of a spinon-like 
continuum of excitations. While conventional spin-wave excitations take the form of sharp surfaces of dispersion in Q –ω
space, in herbertsmithite, no surfaces of dispersion are observable in the low-temperature data, which provides a direct 
evidence that the excitations are fractionalized, forming a continuum. With the exotic T1 power law, this can be taken as 
two solid experimental milestones that certainly need further refinements, but already indicate that herbertsmithite is a 
fantastic experimental playground for the QSL concept in 2D.

Finally Raman spectroscopic investigations of the quasi-elastic signal [77] indicate that the magnetic energy density of 
excitations obeys a power-law dependence with T and the in-plane low-frequency optical conductivity [78] has a power-law 
ω dependence. Both indicate a gapless ground state consistent with a U(1) spin liquid.

Olariu et. al. PRL 100 087202Han et. al. PRB 94 160409
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Material SG θ Order Reference(s)

Volborthite
Cu3V2O7(OH)2.2H2O

C2/m -115 K 1 K
Z. Hiroi et. al., JPSJ 70, 3377

M. Yoshida et. al., PRL 103, 077207
G. J. Nilsen et. al., PRB 84, 172401

Herbertsmithite
β-Cu3Zn(OH)6Cl2

R3̅m -240 K < 50 mK
M. P. Shores et. al. JACS 127, 13462

de Vries et. al. PRL 103, 237201
T. Han et. al. Nature 492, 406

KCu3As2O7(OD)3 C2/m +13.4 K 7 K Y. Okamoto et. al. JPSJ 81, 033707 

Bayldonite
PbCu3(AsO4)2(OH)2

C2/c +49 K < 2 K ? Unpublished (H. Ishikawa, Y. 
Okamoto)

Vesignieite
BaCu3(VO4)2(OH)2

C2/m -59 K 7 K Y. Okamoto et. al., JPSJ 78, 033701
M. Yoshida et. al., JPSJ 82, 013702

Edwardsite
Cu3Cd2(SO4)2(OH)6.4H2O

P21/c - 50 K 4.3 K H. Ishikawa et. al. JPSJ 82, 063710

Kapellasite
ɑ-Cu3Zn(OH)6Cl2

R3̅m 0 K < 50 mK Colman et al., Chem. Mater 20 6897 
Fåk et. al. PRL, 109 137208

Cu3Zn(OH)6(SO4) P21/a - 79 K < 50 mK Y. Li et. al., cond-mat:1310.2795
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Kagome materials: Jahn-Teller
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Cu2+ is strongly Jahn-Teller active. Orbital can be inferred from local geometry

Uniform orbital
order

Trigonal/rhombohedral
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15 different combinations
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Kagome materials: Jahn-Teller

42

Alternating orbital
order

Monoclinic

Cu2+ is strongly Jahn-Teller active. Orbital can be inferred from local geometry
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Superexchange in Cu2+ minerals

43

The orbital order not only leads to an anisotropy in the nearest neighbour bond 
distances, but also to fundamentally different exchange pathways:

e. g. uniform e.g. alternating

µ2 - X µ3 - X

∠Cu2+ - X - Cu2+  ~ 120° ∠Cu2+ - X - Cu2+  ~ 90-105° 

Antiferromagnetic Can be ferromagnetic

Yoon et. al. Inorg. Chem 44 8076
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Volborthite: Cu3V2O7(OH)2.2H2O

44

C2/m, θ = -115 K , orbital order

Hiroi et. al. JSPJ 70 3377

arXiv:1004.2185v1  [cond-mat.str-el]  13 Apr 2010
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DFT calculations consistent with naive assumptions from coordination of Cu2+: 
looks like volborthite can be described as coupled spin chains… 



TUM, 20/11/2017

Volborthite: powder

45

… however, despite being far away from the ideal kagome lattice antiferromagnet, 
volborthite shows no order down to low T

Only weak short-range order associated with incommensurate positions Q1 and 
Q2, spin-wave-like spectrum at 50 mK. Order not captured by chain model.

GJN et. al. PRB 84 172401

4

dispersion among the scenarios considered assumes zone
centers close to the (10) and (01) positions, yielding the
dispersion:

ω(q) =
√

(2Je
a + 2Je

b)
2 − [2Je

a cos(qxa) + 2Je
b cos(qyb)]

2

(2)
where Je

a,b are effective exchanges, giving the amplitudes
of the dispersion along a and b. Then,

S(q,ω) = |F (τ)|2
2− cos(qxa)− cos(qyb)

ω(q)
(3)

where |F (τ)|2 is the structure factor at the chosen po-
sitions, 1/ω describes antiferromangetic spin wave in-
tensity, and the numerator is a geometric term yielding
zero intensity at ferromagnetic zone centers. To yield
a smooth continuous function, S(q,ω) was interpolated
between adjacent Brillouin zones. Finally, the spectrum
was powder averaged and convoluted with the experi-
mental resolution. The result of this procedure using
Je
a = 5.1 meV and Je

b = 15.3 meV closely resembles
the experimental data (Fig. 4(b)). One important con-
clusion from this analysis is that the steepness of the
Q2 mode implies that the 5 meV band cannot be the
the global zone boundary energy. Instead the flat band
is found to be a saddle point, which requires sizeable
anisotropy between Je

a and Je
b . This result is consistent

with LS(D)A+U calculations, which also suggest a sig-
nificant anisotropy in exchange along a and b.

In summary, we have reported polarised and inelastic
neutron scattering results on the quasi-kagome s = 1/2
antiferromagnet volborthite. These reveal three impor-
tant features: i) Buildup of nearest neighbor pair correla-
tions from 50 K to 10 K; ii) Short range order indicated
by peaks at Q1 = 0.65(3) Å−1 and Q2 = 1.15(5) Å−1

in the diffuse and inelastic scattering below 5 K; and iii)
The excitation spectrum displays dispersive modes em-
anating from both Q1 and Q2 along with a flat mode
at ωf = 5 meV. The inelastic intensity at Q1 becomes
dominant below 1.7 K, identifying the nature of the low-
T state reported from 51V NMR and Cp. Most mod-
els proposed for volborthite however inaccurately predict
no scattering at Q1, and could therefore be ruled out.
We provide an empirical dispersion model which repro-
duce the experimental observations for an anisotropic set
of exchanges which are in rough agreement with recent
LS(D)A+U calculations. A quantum treatment of this
model could well yield a correct description of both the
correlations and excitation spectrum that we have un-
covered experimentally.

We thank Z. Hiroi, B. F̊ak, P. Mendels, F. Bert, and
O. Janson for stimulating discussions, G. Ehlers and J.
Gardner for assistance during initial experiments, and
SNF for support.
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Q [Å−1]

Je
a = 5.1 meV

Je
b = 15.3 meV

FIG. 4: (a) Reciprocal space of volborthite: the structural
unit cell is indicated by the rectangle, and the extended Bril-
louin zone of the kagome lattice by the dotted hexagon. Sym-
bols represent Bragg peaks of the orders listed in the text.
(b) The experimental S(Q,ω) measured at 0.05 K compared
with the powder averaged S(Q,ω) derived from our empirical
spin wave model. The dashed line in the left panel indicates
the (Q,ω) window of the experiment.
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FIG. 1. (Color online) Structure of volborthite. (a) Kagome
planes of Cu(1) and Cu(2) octahedra (respectively, gray and black)
are separated by V2O7 columns (orange). (b) Local environments of
Cu2+ in the quasi-kagome plane. Solid and dashed black lines indicate
the two nearest-neighbor exchanges, J1 and J ′

1. The next-nearest-
neighbor exchange J2 along the b direction is shown in orange (gray)
arcs.

200 K ∼ 2J , the Q dependence of (dσ /d")mag approximately
follows the Cu2+ form factor, |f (Q)|2, as anticipated for
a paramagnet. Reducing the temperature to 15 K, broad
diffuse scattering develops around Q = 1.1–1.4 Å−1. The Q
dependence is consistent with a buildup of nearest-neighbor
pair correlations, described by the powder-averaged structure
factor (dσ /d")mag:

(
dσ

d"

)

mag
= 2

3

(γnr0

2
µ

)2
|f (Q)|2

×
(

1 + Z1⟨S0 · S1⟩
sin Qr

Qr

)
, (1)

where the second term in parentheses reflects the average
correlation ⟨S0 · S1⟩ = −0.25(5) between a unit spin and its
Z1 nearest neighbors at a distance rCu-Cu ∼ 3 Å. The total
scattering was found to be 0.99(8)µ2

B per Cu, corresponding
to 33% of the full g2S(S + 1). The fact that correlations
are weak and confined to only nearest neighbors even at
T/Javg ∼ 0.2 are both indicators of strong frustration in
volborthite.

As T is further decreased to first 10 K and then 5 K, the
broad diffuse scattering persists, but some (14%) of the spectral
weight is shifted into two sharper (although not resolution
limited) peaks at Q1 = 0.65(3) Å−1 and Q2 = 1.15(5) Å−1.
The corresponding correlation length, ξ = 24(8) Å ∼ 8rCu-Cu,
was extracted by fitting the diffuse scattering to Eq. (1) and
the two sharper features to Lorentzians [Fig. 2(d)].

The dynamical structure factor, S(Q,ω), was investigated
by inelastic neutron scattering on IN4 at ILL. Spectra were
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FIG. 2. (Color online) (dσ /d")mag for volborthite at T =
200,15,10, and 5 K. (a) (dσ /d")mag mimics f (Q)2 (dashed black
line) for Cu2+. [(b),(c)] Spectral weight shifts into a broad feature
around 1.1–1.4 Å−1. Solid line is fit to Eq. (1). (d) Fit to (dσ /d")mag

at 5 K as described in the text (red, gray). The dashed black line
indicates the fit at 10 K, showing the shift of spectral weight into the
two sharp features at Q1 and Q2.

collected using incident energy Ei = 17.2 meV, giving an
elastic Q range of 0.65–4.95 Å−1. Further experiments were
carried out on MARI at ISIS (Ei = 15 meV, 0.45–4.95 Å−1 at
ω = 0 meV). Data are summarized in Fig. 3. At 50 K ∼ J/2,
S(Q,ω) shows only a broad response centered at Q = 1.1 Å−1

and extending to 5 meV, consistent with fluctuations in a
short-range-correlated system. The Q dependence extracted
by integrating over the range 2–6 meV is indicated in the
top panel of Fig. 3(b). Its form is similar to S(Q) at 10 and
15 K, and can also be fitted by Eq. (1) using r ∼ 3.5(2)Å ∼
rCu-Cu. Acoustic phonons are observed dispersing from nuclear
Bragg positions at Q > 2 Å−1 and intense phonon scattering
is found above 7 meV, making extraction of the magnetic
signal at these energies difficult. Cooling to 5 K, the low-Q,
low-ω intensity has largely moved into two features: an
intense broad flat band, centered at ωf = 5.0(2) meV, and
a nearly vertical bar of scattering at Q = 1.08(2) Å−1, which
coincides with the Q2 peak in S(Q). Both of these features
sharpen as the temperature is reduced toward 0.05 K, with a
second bar of scattering at Q = 0.68(4) Å−1 ∼ Q1 growing
below 1.7 K. Q cuts through the Q1 and Q2 modes are
shown in the lower four panels of Fig. 3(b). While the
peaks narrow somewhat with decreasing T , a more dramatic
change is observed in their respective intensities, I (Q1) and
I (Q2). On cooling, I (Q2) remains constant, while I (Q1)
increases to a final ratio I (Q1)/I (Q2) = 1.6 at 0.05 K.
The buildup of dynamical correlations at the Q1 position
thus coincides with the transition at T ∗ observed in NMR
and µSR.

The line shape and amplitude of the flat mode, on the other
hand, show little temperature dependence, with only slight
narrowing to become resolution limited between 5 and 1.7 K.
Such narrow flat modes are often associated with two-level
excitations, e.g., between a singlet and triplet. Indeed, such
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A twist in the tale: high-quality powders and single crystals show an additional 
structural transition near room temperature:
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This transition is an “orbital switching” — a very rare case for Cu2+ in an inorganic 
material, where such transitions usually occur at high T.

T > 310 K C2/m T < 310 K C2/c

Yoshida, GJN et. al. Nature Comms. 3 860 
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Interactions within trimers formed by orbital order dominate, resulting in effective 
triangular lattice system

contributions, we perform DFTþ U calculations for
magnetic supercells and map the total energies onto a
Heisenberg model. These results are summarized in Table I.
Prior to discussing the magnetic model, we should note

that the structural model of Ref. [30] implies the presence
of two similar, albeit symmetrically inequivalent magnetic
layers, with slightly different Cu…Cu distances. Since the
respective transfer (t) and exchange (J) integrals for both
layers are nearly identical (Table I), we can approximately
assume that all layers are equal and halve the number of
independent terms in the model.
The resulting four exchanges, J, J0, J1, and J2, form the

2D microscopic magnetic model depicted in Fig. 2. This
model is topologically equivalent to the CFC model: it
consists of chains with first- (J1) and second-neighbor (J2)
couplings and the interstitial Cu atoms coupled to two
neighboring chains. However, the exchange between the
interstitial spins and the chains is realized by two different
terms: a dominant AF J and much weaker FM J0. This
contrasts with the CFC model, where both exchanges are
equivalent (J ¼ J0).
From the structural considerations, the difference bet-

ween J and J0 may seem bewildering, as Cu…Cu distances
(Table I) and Cu-O-Cu angles (104.6° versus 102.4°) are
very similar. Indeed, for the usual Cu-O-Cu path, the
superexchange would be only marginally different for J
and J0. The difference originates from the long-range
Cu-O-V-O-Cu path [Fig. 2(b)] which provides an addi-
tional contribution to J, but not J0, since the latter lacks a
bridging VO4 tetrahedron. It is known that long-range
superexchange involving empty V d states can facilitate a
sizable magnetic exchange of up to 300 K [46]. Hence, it is
the long-range Cu-O-V-O-Cu superexchange that renders J
much stronger than J0.
A distinct hierarchy of the exchanges J > jJ1j > J2; J0

leads to a simple and instructive physical picture. The
dominant exchange J couples spins into trimers that tile the
magnetic layers. Each trimer is connected to its four nearest
neighbors by FM J0 and J1, and to its two second neighbors
by AF J2 (Fig. 2). In contrast to the CFC model, where
frustration is driven exclusively by J2, the coupled trimer
model has an additional source of frustration: triangular
loops formed by J, J0, and J1. Together with J2, they act
against long-range magnetic ordering.
DFTþU-based numerical estimates for the leading

exchange couplings allow us to address the experimental
data. To simulate the temperature dependence of the
magnetic susceptibility χ, ED of the spin Hamiltonian is
performed on lattices of N ¼ 24 spins, using the approxi-
mate ratios of the exchange integrals J∶J0∶J1∶J2 ¼
1∶ − 0.2∶ − 0.5∶0.2 (Table I). The simulated curves are
fitted to the experiment by treating the overall energy scale
J, the Landé factor g, and the temperature-independent
contribution χ0 as free parameters. In this way, we obtain
a good fit down to 35 K with J ¼ 252 K, g ¼ 2.151, and

χ0 ¼ 1.06 × 10−4 emu=½molCu$ (Fig. 3). ED even repro-
duces the broad maximum at 18 K, which stems from
short-range antiferromagnetic correlations. Deviations at
lower temperatures are finite-size effects.
After establishing good agreement with the χðTÞ data,

we employ a larger lattice of N ¼ 36 spins and calculate
the GS magnetization curve, which shows a wide 1

3-
magnetization plateau between the critical fields Hc1 and
Hc2 (Fig. 3, bottom left). Scaling with J and g from the
χðTÞ fit, without any adjustable parameters, yields Hc1 ¼
22 T in agreement with the experimental Hc1 ¼ 26 T. In
the plateau phase, first- and second-neighbor spin corre-
lations within each trimer amount to hS0 · S1i≡ hS1 ·
S2i ¼ −0.4938 and hS0 · S2i ¼ 0.2470, very close to the
isolated trimer result (− 1

2 and
1
4, respectively [33]). Hence,

the 1
3-plateau phase can be approximated by a product of

polarized spin trimers formed by strong J bonds (Fig. 1,
right), and thus is very different from the plateau phases
of the KHM (Fig. 1, left) and the CFC model (Fig. 1,
middle). The plateau stretches up to a remarkably high
Hc2 ≃ 225 T, at which the spin trimers break up, allowing
the magnetization to triple.
ED-simulated spin correlations indicate that the simplest

effective model—the isolated trimer model—already cap-
tures the nature of this plateau phase. On general grounds,
we can expect the isolated trimer model to be valid
only at high temperatures. However, it provides a surpris-
ingly good fit for magnetic susceptibility down to 60 K
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FIG. 3. Top: Magnetic susceptibility of the microscopic spin
Hamiltonian calculated by ED on a N ¼ 24 site lattice compared
to experiment (Ref. [47]) and an isolated trimer model. Bottom
left: GS magnetization curve simulated on a lattice of N ¼ 36
spins for the same model. Insets are magnifications of the
respective data. Bottom right: GS magnetization of the full
effective model [33] with N ¼ 24, 26, and 30 pseudospins
compared to experiment (Ref. [30]).
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Interesting bond nematic phase formed from condensation of two-magnon bound 
states at low H…

from Ref. [30] and perform DFT and DFTþ U calcula-
tions. We find a microscopic model which is even more
involved than CFC: besides sizable J1 and J2 forming
frustrated spin chains, the coupling between the chain and
the interstitial Cu atoms is now facilitated by two inequi-
valent exchanges, a sizable AF J and a much weaker FM J0.
Because of the dominance of J, the magnetic planes break
up into magnetic trimers (Fig. 2). By using exact diago-
nalization (ED) of the spin Hamiltonian, we demonstrate
that this model agrees with the experimental magnetization
data and explains the nature of the plateau phase

(Fig. 1, right). Further insight into the low-field and
low-temperature properties of volborthite is provided by
analyzing effective models of pseudospin-12 moments T
living on trimers. Thus, a model based on effective
exchanges J 1, J 2, and J 2

0 supports the presence of a
bond nematic phase due to the condensation of two-
magnon bound states. Finally, we conjecture that powder
samples of volborthite suffer from disorder effects pertain-
ing to the stretching distortion of Cu octahedra.
We start our analysis with a careful consideration of the

crystal structure. Volborthite features a layered structure,
with kagomelike planes that are well separated by water
molecules and nonmagnetic V2O7 groups. Magnetic Cu2þ

atoms within the planes occupy two different sites: Cu(2)
with four short Cu-O bonds forms edge-sharing chains, and
interstitial Cu(1) located in between the chains. Different
structural models in the literature suggest either squeezed
[31] or stretched [32] Cuð1ÞO6 octahedra. The DFT study
of Ref. [11] employed a structure with a squeezed Cu(1)
octahedron. Although such a configuration can be realized
at high temperatures [27], Cuð1ÞO6 octahedra are actually
stretched in the temperature range relevant to magnetism
[27,30]. The respective structural model was never studied
with DFT; hence, we fill this gap with the present study.
For DFT calculations [33], we use the generalized

gradient approximation (GGA) [44] as implemented in
the full-potential code FPLO9.07-41 [45]. We start with a
critical examination of all structural models proposed so
far, by optimizing the H coordinates and comparing the
total energies. In this way, we find that the single crystal
structure of Ref. [30] has the lowest total energy [33]. All
further calculations are done for this structural data set.
To evaluate the magnetic couplings, we project the

relevant GGA bands onto Cu-centered Wannier functions
[33]. The leading transfer integrals t (> 50 meV) of the
resulting one-orbital (dx2−y2) model are provided in Table I.
Their squared values are proportional to the AF super-
exchange, which is usually the leading contribution to the
magnetism. However, such a one-orbital model fully
neglects FM contributions that are particularly strong for
short-range couplings (dCu…Cu ≲ 3 Å). Hence, to evaluate
the exchange integrals that comprise AF and FM

FIG. 2. (a) Microscopic magnetic model of volborthite featur-
ing four relevant exchange couplings: antiferromagnetic J (thick
bars) and J2 (solid curved lines), as well as ferromagnetic J0

(dashed lines) and J1 (wiggly lines). Magnetic trimers formed by
J exchanges are highlighted (shaded ovals). Magnetic Cu atoms
are shown as large spheres within CuO4 squares, nonmagnetic V
atoms are middle-sized spheres within VO4 tetrahedra. (b) The
Cu-O-V-O-Cu superexchange paths in the magnetic trimer.
(c) Magnetic trimers form a basis for (d) the effective model
with ferromagnetic J 1, as well as antiferromagnetic J 2, J 2

0,
and J 3.

TABLE I. Direct Cu…Cu distances dCu…Cu (in Å), transfer integrals t (in meV) and exchange integrals J (in K).
GGAþ U results are provided for three different values of the on-site Coulomb repulsion Ud. The two numbers in
each entry pertain to the two structurally inequivalent layers; this minor layer dependence is ignored in the
subsequent analysis.

J (GGAþU)

dCu…Cu t Ud ¼ 8.5 eV 9.5 eV 10.5 eV

J 3.053=3.058 −191= − 194 193=205 156=167 127=136
J0 3.016=3.020 −80= − 84 −29= − 22 −30= − 25 −32= − 26
J1 2.922=2.923 −98= − 100 −65= − 65 −76= − 74 −77= − 76
J2 5.842=5.842 64=64 32=31 26=22 22=21
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up to 74 T and 51V NMR experiments up to 30 T. Two
remarkably different features have been obtained compared
with those in the previous study on polycrystalline samples:
one is a 1=3 plateau spreading over a wide range of
magnetic field above 28 T and the other is a novel phase
at 23–26 T, where the magnetization shows a linear field
dependence and the NMR spectra show an inhomogeneous
distribution of the internal field. We argue that these phases
in volborthite seem to be well described by a model, in
which Cu2 spins form frustrated J1 − J2 chains coupled via
Cu1 spins in the distorted kagome net.
Growth of large single crystals of volborthite was made

possible by carefully tuning preparation conditions and
spending a long time under a hydrothermal condition [22].
A typical crystal possesses an arrowhead shape with the
surface parallel to the ab plane, i.e., the kagome plane, and
with a twin boundary at the center of the arrowhead
(Fig. 1). Single crystal x-ray diffraction measurements
using synchrotron radiation source found a structural
transition at 155 K from the I2=a structure [21,22] into
a low-temperature structure with the space group of P21=a
(No. 14) (see Supplemental Material A [45]). The two
structures are basically the same except that there are two
kinds of crystallographically distinguished kagome layers
in the P21=a structure instead of one kind in the I2=a
structure. However, all the kagome layers have an identical
arrangement of spin-carrying Cu 3dx2−y2 orbitals (Fig. 1),

which has been uniquely determined from large differences
in the Cu-O bond lengths [45].
High-field magnetization measurements were performed

by the induction method using a pickup coil in pulsed
magnetic fields up to 74 T with a duration time of 4 ms
generated by the nondestructive magnet [46]. High-field
data were calibrated so as to reproduce the low-field data
up to 7 T measured in a SQUID magnetometer (MPMS,
Quantum Design). 51V NMR experiments were carried out
at LNCMI in Grenoble using a 20 MW resistive magnet.
NMR spectra were collected by summing Fourier trans-
forms of spin-echo signals at equally spaced magnetic field
B with a fixed resonance frequency.
Magnetization measurements were carried out on two

piles of crystals grown for 30 days from the same
preparation batch without a particular alignment in the
plane. The measurement temperature was 1.4 K, which is
above the magnetic ordering temperature of phase I (∼1 K)
but below that of phase II (∼2 K) and phase III (above 4 K
at 30 T) [31,47]. As shown in Fig. 1, the two magnetization
curves from the single crystals in magnetic fields B parallel
and perpendicular to the ab plane resemble each other,
indicating a weak anisotropy, and are quite different from
that of the polycrystalline samples. Each curve increases
steeply around 20 T and then saturates at 30 T, followed
by a small increase up to 74 T. This large increase at 20 T
may correspond to the second magnetization step between
phases II and III in the polycrystalline sample, though its
magnitude is much enhanced. On the other hand, there is
no third magnetization step at 46 T in the single crystals.
It is also noted that we have observed a magnetization step
at 4.5 T between phases I and II in a single crystal below
1 K (not discussed in this work) [48], which is similar to
that in the polycrystalline sample [29]. Thus, differences in
magnetization between the two samples are prominent only
at large magnetic fields.
The nearly flat magnetization above 30 T must indicate a

magnetization plateau. The small slopes may be attributed
to contributions from the Van Vleck paramagnetism, which
are determined by linear fitting of the curves as shown by
the dashed lines in Fig. 1. The spin components at the
magnetization plateaus are estimated from the intercepts of
the linear fits: 0.38 and 0.36 μB per Cu in B⊥ and ∥ab,
respectively, which are close to 1=3 of the saturation
magnetization. The difference between the two values
must come from the anisotropy of the Landé g factor:
the g values of 2.28 and 2.18 in B⊥ and ∥ab
can explain the observed magnetization values for the
1=3 plateaus, respectively. These g values are typical for
cuprates and are consistent with the previous electron spin
resonance experiments on a polycrystalline sample
of volborthite, which provide axially symmetric g values,
g∥ ¼ 2.40 and g⊥ ¼ 2.04 [49]; all the dx2−y2 orbitals in
volborthite are inclined approximately 50° from the
ab plane.

FIG. 1 (color online). Magnetization curves of volborthite
measured at 1.4 K on two piles of single crystals in magnetic
fields perpendicular (red line) and parallel (blue line) to the ab
plane, and on a polycrystalline sample (green line) [32]. Shown
also are a typical single crystal of volborthite (upper left) and
the arrangement of Cu dx2−y2 orbitals projected onto the ab plane
in the low-temperature P21=a structure (lower right). J1 and J2
represent the NN and NNN interactions in the Cu2 spin chains,
respectively. J0 and J00 represent the NN interactions between
Cu1 and Cu2 spins.
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FIG. 1. (Color online) Structure of volborthite. (a) Kagome
planes of Cu(1) and Cu(2) octahedra (respectively, gray and black)
are separated by V2O7 columns (orange). (b) Local environments of
Cu2+ in the quasi-kagome plane. Solid and dashed black lines indicate
the two nearest-neighbor exchanges, J1 and J ′

1. The next-nearest-
neighbor exchange J2 along the b direction is shown in orange (gray)
arcs.

200 K ∼ 2J , the Q dependence of (dσ /d")mag approximately
follows the Cu2+ form factor, |f (Q)|2, as anticipated for
a paramagnet. Reducing the temperature to 15 K, broad
diffuse scattering develops around Q = 1.1–1.4 Å−1. The Q
dependence is consistent with a buildup of nearest-neighbor
pair correlations, described by the powder-averaged structure
factor (dσ /d")mag:

(
dσ

d"

)

mag
= 2

3

(γnr0

2
µ

)2
|f (Q)|2

×
(

1 + Z1⟨S0 · S1⟩
sin Qr

Qr

)
, (1)

where the second term in parentheses reflects the average
correlation ⟨S0 · S1⟩ = −0.25(5) between a unit spin and its
Z1 nearest neighbors at a distance rCu-Cu ∼ 3 Å. The total
scattering was found to be 0.99(8)µ2

B per Cu, corresponding
to 33% of the full g2S(S + 1). The fact that correlations
are weak and confined to only nearest neighbors even at
T/Javg ∼ 0.2 are both indicators of strong frustration in
volborthite.

As T is further decreased to first 10 K and then 5 K, the
broad diffuse scattering persists, but some (14%) of the spectral
weight is shifted into two sharper (although not resolution
limited) peaks at Q1 = 0.65(3) Å−1 and Q2 = 1.15(5) Å−1.
The corresponding correlation length, ξ = 24(8) Å ∼ 8rCu-Cu,
was extracted by fitting the diffuse scattering to Eq. (1) and
the two sharper features to Lorentzians [Fig. 2(d)].

The dynamical structure factor, S(Q,ω), was investigated
by inelastic neutron scattering on IN4 at ILL. Spectra were

0

0.05

0.1

0.15

0.2

0.25

(d
σ 

/ d
Ω

) m
ag

 (
ba

rn
s 

st
−1

 f.
u.

−1
)

200 K(a) 15 K(b)

0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

Q (Å−1)

10 K(c)

0 1 2 3

Q (Å−1)

5 K(d)
Q

1

Q
2

FIG. 2. (Color online) (dσ /d")mag for volborthite at T =
200,15,10, and 5 K. (a) (dσ /d")mag mimics f (Q)2 (dashed black
line) for Cu2+. [(b),(c)] Spectral weight shifts into a broad feature
around 1.1–1.4 Å−1. Solid line is fit to Eq. (1). (d) Fit to (dσ /d")mag

at 5 K as described in the text (red, gray). The dashed black line
indicates the fit at 10 K, showing the shift of spectral weight into the
two sharp features at Q1 and Q2.

collected using incident energy Ei = 17.2 meV, giving an
elastic Q range of 0.65–4.95 Å−1. Further experiments were
carried out on MARI at ISIS (Ei = 15 meV, 0.45–4.95 Å−1 at
ω = 0 meV). Data are summarized in Fig. 3. At 50 K ∼ J/2,
S(Q,ω) shows only a broad response centered at Q = 1.1 Å−1

and extending to 5 meV, consistent with fluctuations in a
short-range-correlated system. The Q dependence extracted
by integrating over the range 2–6 meV is indicated in the
top panel of Fig. 3(b). Its form is similar to S(Q) at 10 and
15 K, and can also be fitted by Eq. (1) using r ∼ 3.5(2)Å ∼
rCu-Cu. Acoustic phonons are observed dispersing from nuclear
Bragg positions at Q > 2 Å−1 and intense phonon scattering
is found above 7 meV, making extraction of the magnetic
signal at these energies difficult. Cooling to 5 K, the low-Q,
low-ω intensity has largely moved into two features: an
intense broad flat band, centered at ωf = 5.0(2) meV, and
a nearly vertical bar of scattering at Q = 1.08(2) Å−1, which
coincides with the Q2 peak in S(Q). Both of these features
sharpen as the temperature is reduced toward 0.05 K, with a
second bar of scattering at Q = 0.68(4) Å−1 ∼ Q1 growing
below 1.7 K. Q cuts through the Q1 and Q2 modes are
shown in the lower four panels of Fig. 3(b). While the
peaks narrow somewhat with decreasing T , a more dramatic
change is observed in their respective intensities, I (Q1) and
I (Q2). On cooling, I (Q2) remains constant, while I (Q1)
increases to a final ratio I (Q1)/I (Q2) = 1.6 at 0.05 K.
The buildup of dynamical correlations at the Q1 position
thus coincides with the transition at T ∗ observed in NMR
and µSR.

The line shape and amplitude of the flat mode, on the other
hand, show little temperature dependence, with only slight
narrowing to become resolution limited between 5 and 1.7 K.
Such narrow flat modes are often associated with two-level
excitations, e.g., between a singlet and triplet. Indeed, such

172401-2

Powders do no undergo “orbital switching” because of disorder (possibly related to 
disorder of interplane H2O)

Diffuse scattering can thus be interpreted as small clusters (mostly dimers) + 
short-range magnetic order…
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C2/m, θ = +14 K, TN = 7.1 K 

Okamoto GJN et. al. JPSJ 81, 033707

Similar orbital order to volborthite, but different orbital orientations:
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FIG. 1. (Color online) Left: Structure and assumed orbital or-
dering pattern for KCu3As2O7(OD)3. The kagome lattice, a two-
dimensional network of corner-sharing triangles, is formed by edge-
sharing Cu1 (blue) and Cu2 (black) octahedra. Right: Magnetic
exchange paths used in Eq. (1).

reported synthesis in D2O rather than H2O solvent [17].
All operations were carried out in a dry atmosphere to
avoid exchange between D and H, and the sample purity
was verified by both x-ray diffraction and superconducting
quantum interference device (SQUID) magnetometry. Around
5 g of the powder sample was loaded in a 9 mm V can, and
cooled to temperatures down to 1.8 K using a standard 4He
Orange cryostat. Neutron diffraction patterns were collected
on the D20 instrument at ILL using λ = 2.41 Å neutrons
from a PG(002) monochromator at a takeoff angle θ = 42◦;
these conditions optimize flux at the expense of resolution.
The background from the sample environment was reduced
using a radial oscillating collimator, and spectra were collected
at T = 1.8 < TN < 10 K. Higher resolution patterns for the
determination of the nuclear structure were measured at
T = 1.8 K on D2B (ILL), using λ = 1.594 Å from the (335)
reflection of a Ge monochromator with θ = 135◦. Inelastic
neutron scattering data were collected at the IN4 (ILL) time-
of-flight spectrometer with an incident energy Ei = 9.2 meV
(λ = 2.981 Å). Measurements of the dielectric constant ϵr

were carried out on a pressed pellet of thickness d = 0.65 mm
silver pasted to flat electrodes, and connected to an LCR meter
(Agilent E4980A). Finally, the polarization P was determined
by integrating the pyroelectric current measured on the same
pellet using an electrometer (Keithley 6517A), cooling in
electric fields of ±307 kV m−1.

We begin the discussion of our results by establishing the
nuclear structure; a Rietveld refinement of the high-resolution
diffraction data yields lattice parameters a = 10.2872(1) Å,
b = 5.9728(1) Å, c = 7.8492(1) Å, and β = 117.740(1)◦,
which agree well with those reported in Ref. [18]. The H/D
atoms are placed based on symmetry considerations, and
refinement yields coordinates (0.261(1),0,0.265(1)) for H1
and (0.5,0,0.5) for H2, respectively. H2 forms a hydrogen
bond along with two O2 atoms belonging to adjacent AsO4
groups. The deuteration was estimated to be 96.0(2)% on the
H1 site and 84(2)% on H2.

In the medium-resolution D20 data, several magnetic
Bragg peaks are observed below TN1 = 7.05(5) K, all of
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FIG. 2. (Color online) (a) Subtracted elastic neutron scattering
spectra (blue dots) from D20 with Rietveld refinement (red line) of the
magnetic structure. The oscillations around nuclear Bragg positions
(*) are an artifact resulting from the Debye-Waller factor. Inset:
Rietveld refinement of the nuclear structure from high-resolution
D2B data. (b) Magnetic intensity vs T for the (000) + k and (001) − k
reflections. The transitions observed in specific heat measurements
are marked by dashed vertical lines. (c) The refined magnetic
structure viewed along c∗. The red and pink arrows indicate the
total polarization and contributions to it from the ⟨110⟩ chains,
respectively. (d) The propagation of the magnetic structure along
c. Note the antiparallel alignment of spins related by the centering
translation on adjacent planes. The Cu-Cu pathway between these is
also the shortest, and is thus assigned to Jic.

which may be uniquely indexed by the incommensurate
k vector = (0.7750(4),0,0.1090(4)) at T = 6.25 K. Cooling
further, kx (kz) decreases (increases), saturating at k =
(0.7697(1),0,0.1109(1)) at 1.8 K [Fig. 2(b)]. Around TN2 =
5.5 K, there is a discontinuity in the intensities of the (000) + k
and (001) − k Bragg peaks, and an accompanying small shift
in their relative intensity. This overall temperature dependence
is compatible with the thermodynamic data [17]. As no
additional Bragg peaks are observed below TN2, the subtle
difference in magnetic structure between TN2 < T < TN1
and T < TN2 is not distinguishable in the present study.
Accordingly, we focus on the T = 1.8 K < TN2 data for the
subsequent analysis of the magnetic structure.

Because the experimentally determined k vector does
not coincide with a high symmetry point in the Brillouin
zone, a full description of the magnetic symmetry requires
determining the irreducible corepresentations of the magnetic
group M = Gk + Kh, where S = {E,my,2y,1̄} is the space
group, Gk = {E,m} is the little group of operators leaving
k invariant, h = S − Gk, and K is the complex conjugation
operator [21]. We thus find two one-dimensional real coreps,
D1 and D2, for which the basis functions ψα may be calculated
by the usual projection method. The D1 mode has the spins
on the Cu1 site pointing in the b direction, with the a and c
components antiparallel between the two orbits of the Cu2 site
(Table I). For the D2 mode, on the other hand, the magnetic
moment on the Cu1 site lies in the ac plane, while the b
components of the Cu2 spins are antiparallel.

140412-2

F or AF?
F or AF?
AF
AF



TUM, 20/11/2017

Magnetic structure

50

Unlike volborthite, magnetic order at T ~ θ/2 in a helical magnetic structure with 
propagation vector k = (kx 0 kz) - there must be some frustration!
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FIG. 6. The difference of the zero-field neutron diffraction
patterns taken at 1.65 and 10 K with the Rietveld refinement (red) to
the model described in the text. Asterisks mark the positions of intense
nuclear Bragg reflections and green tick marks magnetic reflections.
(inset) The magnetic field dependence of the scattering in a narrow
angular range around the (000)+ and (001)− peaks at 1.65 K.

To investigate the changes in magnetic structure on crossing
Hc, we now focus on the field scan between H = 0 and
8 T at 1.65 K (Fig. 7). When the magnetic field is increased
towards Hc, the intensity of the (000)+ peak decreases slightly,
while that of (001)− does not change significantly. The x
component of the propagation vector kx is reduced from
0.7708(6) at 0 T to 0.7672(4) at µ0H = 3 T < Hc, while
1 − 2kz remains flat. There is no strong broadening of either
peak, which would indicate an inhomogeneous response to
the effective random field. Refining the patterns according to
the model above, we find that the aforementioned changes
result from a slight decrease in both ! and µord. On passing
through the transition at Hc, both µord and ! show steplike
drops, but the coplanar helical model still fits well. It thus
appears that the transition represents a flop of the helix from
! = 25◦ to close to, or in, the ab plane if it is assumed
that the entire sample undergoes the transition. Furthermore,
the slopes of both kx and 1 − 2kz versus H become steeper,
with both approaching the nearest commensurate value, 3/4.
Unfortunately, it is not clear whether the propagation vector
locks into the commensurate wave-vector, as data at fields
higher than 8 T is not available.

FIG. 7. The magnetic field [(a)–(c)] and temperature [(d)–(f)] evolution of the spin helix model parameters kx, 1 − 2kz, !, and µord

measured at fields between 3 and 6 T and for a range of temperatures from 1.65 to 10 K. The 1.65 K constant temperature data show a slight
decrease in all parameters until the transition at µ0Hc = 3.7 T is reached, at which point ! drops rapidly towards 0◦ and kx approaches the
nearest commensurate value 3/4. At 6 K, however, there does not seem to be a discontinuity in ! at the transition. The constant field data
in phase IC1 indicate a possible “lock-in” of the propagation vector at TN2(3 T) = 4.95 K, shown by a sharp change in slope. The angle !

between the ab plane and that of the helix shows no change moving across TN2 (the shaded region delimits the transitions at 3 and 6 T), however.
At higher field, in phase IC3, ! shows a strong T dependence below TN1, before saturating below TN2. This similar to the H < Hc case. In
both phases IC1 and IC3, application of a field appears to make the transition at TN1 considerably more first-order in nature, consistent with
the growth of the peak in the capacitance measurements.

214415-6
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TABLE I. Characters and basis functions  ↵ of the coreps of
the magnetic group M. The Cu2 site is split into two orbits,
with Cu20 at (1/4, 3/4, 0).

Corep/Irrexp
E 2y  Cu1  Cu2  Cu20K1̄ Kmy

D1/�1 1 1 (0,1,0) (1,1,1) (-1,1,-1)
D2/�2 1 -1 (1,0,1) (1,1,1) (1,-1,1)

we focus on the T = 1.8 K< T

N2 data for the subsequent
analysis of the magnetic structure.

Because the experimentally determined k-vector does
not coincide with a high symmetry point in the Bril-
louin zone, a full description of the magnetic symme-
try requires determining the irreducible corepresenta-
tions of the magnetic group M = Gk +Kh, where S =
{E,m

y

, 2
y

, 1̄} is the space group, Gk = {E,m} is the
little group of operators leaving k invariant, h = S�Gk,
and K is the complex conjugation operator21. We thus
find two one-dimensional real coreps, D1 and D2, for
which the basis functions  

↵

may be calculated by the
usual projection method. The D1 mode has the spins on
the Cu1 site pointing in the b direction, with the a and
c components antiparallel between the two orbits of the
Cu2 site (Table 1). For the D2 mode, on the other hand,
the magnetic moment on the Cu1 site lies in the ac plane,
while the b components of the Cu2 spins are antiparallel.

Fitting the magnetic scattering, I

mag

= I(1.8 K) �
I(10 K), to either of the above modes individually yields
poor agreement with the experimental data; �2

> 4 in
both cases. We must therefore shift our attention to so-
lutions involving both. Considering only solutions where
the modes are summed in quadrature and recalling that
the elements of h complex conjugate the basis functions,
two possible types of state result; a helix with point group
210 for D1+iD2 (iD1+D2) and an amplitude modulated
structure with point group m10 for D1+ iD1 (D2+ iD2).
Because the structure is defined by a single k-vector, we
employ the refinement constraint that the spins on either
sub-lattice must be coplanar. In addition, for the heli-
cal D1 + iD2-type structure, we restrict the envelope of
the helix to being circular by refining the spherical com-
ponents (µ, ✓,�) of the Fourier coe�cients in the A2/m
setting of the space group (a0 = c, b

0 = a, c

0 = b). We
note that the point groups of both possible solutions are
polar, and therefore compatible with ferroelectricity.

The best fit (�2 = 1.67) is achieved for the iD1 +D2

solution, with the plane of the helix rotated out of the
ac plane by the azimuthal angle �

Cu1 = �

Cu2 = 148(2)�

and the polar angle ✓
Cu1 = ✓

Cu2 = 166(5)�. The Cu2
(4e) site is split into two orbits with the same phase
�

Cu2 = �

Cu20 = k

x

/4 = 0.1923 [Fig. 2(a)]. The or-
dered moments are found to be 0.86(2) µ

B

for Cu1 and
0.87(1) µ

B

for Cu2, close to the full 1µ
B

expected for
Cu2+, suggesting a surprisingly small fluctuating compo-
nent for a frustrated quantum spin system. The magnetic
structure may be described as crossing helical chains

along the h110i directions, with ferromagnetic alignment
along the b-direction [Fig. 2(c)]. Along c, the moment
direction is slowly modulated, with a period of approx-
imately 10 unit cells [Fig. 2(d)]. Spins related to each
other by the centering translation are antiparallel on ad-
jacent layers; i.e. m(1/4, 1/4, 0) = �m(3/4, 1/4, 1). Fi-
nally, the plane of rotation for both sites is tilted out of
the ab-plane by 31(2)�.

FIG. 3. (a) Phase diagrams in the J 0 = 1 and J 0 = �1
planes derived by solving equation 1 subject to equation 2.
When J 0 < 0, a large area is occupied by the experimentally
observed a-helical phase. (b) Comparison of linear spin wave
theory (right) and inelastic neutron scattering data (left) for
the parameters listed in the text.

Next, we seek a microscopic model that explains the
refined magnetic structure. It is clear that the near-
est neighbor Heisenberg Hamiltonian on the kagome lat-
tice is insu�cient for this purpose. As such, the pres-
ence of either further neighbor couplings or anisotropic
terms in the Hamiltonian are required. We identify two
likely further neighbor superexchange pathways within
the kagome planes: one between Cu2 atoms along the
h100i direction, mediated by two O3 atoms [Fig. 1],
with 2(\Cu-O-O) = 187.2� and r(Cu-Cu) = 5.12 Å, and
the other along h110i through O3 and O4, with 2(\Cu-
O-O) = 291.8�. The latter is similar to the pathway
which yields antiferromagnetic next nearest neighbor ex-
change in edge-shared square planar Cu2+ systems like
LiCuVO4

22 and CuGeO3
23. The exchange integrals cor-

responding to the two pathways above will be referred
to as J

a

and J

ab

, respectively. If J

a

> 0, as seems
likely from \Cu-O-O-Cu⇠ 180�, it frustrates the near-
est neighbor coupling J when J < 0 [Fig. 1]. Likewise,
for J

ab

> 0, frustration arises when J

0
< 0. An interplane

coupling is also required to explain the modulation along
the c-direction; the only plausible pathway is through the
AsO4 tetrahedra, which are joined by H(2). The simplest
model which can be constructed for Heisenberg spins is

GJN et. al. PRB 89 140412
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FIG. 1. (Color online) Left: Structure and assumed orbital or-
dering pattern for KCu3As2O7(OD)3. The kagome lattice, a two-
dimensional network of corner-sharing triangles, is formed by edge-
sharing Cu1 (blue) and Cu2 (black) octahedra. Right: Magnetic
exchange paths used in Eq. (1).

reported synthesis in D2O rather than H2O solvent [17].
All operations were carried out in a dry atmosphere to
avoid exchange between D and H, and the sample purity
was verified by both x-ray diffraction and superconducting
quantum interference device (SQUID) magnetometry. Around
5 g of the powder sample was loaded in a 9 mm V can, and
cooled to temperatures down to 1.8 K using a standard 4He
Orange cryostat. Neutron diffraction patterns were collected
on the D20 instrument at ILL using λ = 2.41 Å neutrons
from a PG(002) monochromator at a takeoff angle θ = 42◦;
these conditions optimize flux at the expense of resolution.
The background from the sample environment was reduced
using a radial oscillating collimator, and spectra were collected
at T = 1.8 < TN < 10 K. Higher resolution patterns for the
determination of the nuclear structure were measured at
T = 1.8 K on D2B (ILL), using λ = 1.594 Å from the (335)
reflection of a Ge monochromator with θ = 135◦. Inelastic
neutron scattering data were collected at the IN4 (ILL) time-
of-flight spectrometer with an incident energy Ei = 9.2 meV
(λ = 2.981 Å). Measurements of the dielectric constant ϵr

were carried out on a pressed pellet of thickness d = 0.65 mm
silver pasted to flat electrodes, and connected to an LCR meter
(Agilent E4980A). Finally, the polarization P was determined
by integrating the pyroelectric current measured on the same
pellet using an electrometer (Keithley 6517A), cooling in
electric fields of ±307 kV m−1.

We begin the discussion of our results by establishing the
nuclear structure; a Rietveld refinement of the high-resolution
diffraction data yields lattice parameters a = 10.2872(1) Å,
b = 5.9728(1) Å, c = 7.8492(1) Å, and β = 117.740(1)◦,
which agree well with those reported in Ref. [18]. The H/D
atoms are placed based on symmetry considerations, and
refinement yields coordinates (0.261(1),0,0.265(1)) for H1
and (0.5,0,0.5) for H2, respectively. H2 forms a hydrogen
bond along with two O2 atoms belonging to adjacent AsO4
groups. The deuteration was estimated to be 96.0(2)% on the
H1 site and 84(2)% on H2.

In the medium-resolution D20 data, several magnetic
Bragg peaks are observed below TN1 = 7.05(5) K, all of
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FIG. 2. (Color online) (a) Subtracted elastic neutron scattering
spectra (blue dots) from D20 with Rietveld refinement (red line) of the
magnetic structure. The oscillations around nuclear Bragg positions
(*) are an artifact resulting from the Debye-Waller factor. Inset:
Rietveld refinement of the nuclear structure from high-resolution
D2B data. (b) Magnetic intensity vs T for the (000) + k and (001) − k
reflections. The transitions observed in specific heat measurements
are marked by dashed vertical lines. (c) The refined magnetic
structure viewed along c∗. The red and pink arrows indicate the
total polarization and contributions to it from the ⟨110⟩ chains,
respectively. (d) The propagation of the magnetic structure along
c. Note the antiparallel alignment of spins related by the centering
translation on adjacent planes. The Cu-Cu pathway between these is
also the shortest, and is thus assigned to Jic.

which may be uniquely indexed by the incommensurate
k vector = (0.7750(4),0,0.1090(4)) at T = 6.25 K. Cooling
further, kx (kz) decreases (increases), saturating at k =
(0.7697(1),0,0.1109(1)) at 1.8 K [Fig. 2(b)]. Around TN2 =
5.5 K, there is a discontinuity in the intensities of the (000) + k
and (001) − k Bragg peaks, and an accompanying small shift
in their relative intensity. This overall temperature dependence
is compatible with the thermodynamic data [17]. As no
additional Bragg peaks are observed below TN2, the subtle
difference in magnetic structure between TN2 < T < TN1
and T < TN2 is not distinguishable in the present study.
Accordingly, we focus on the T = 1.8 K < TN2 data for the
subsequent analysis of the magnetic structure.

Because the experimentally determined k vector does
not coincide with a high symmetry point in the Brillouin
zone, a full description of the magnetic symmetry requires
determining the irreducible corepresentations of the magnetic
group M = Gk + Kh, where S = {E,my,2y,1̄} is the space
group, Gk = {E,m} is the little group of operators leaving
k invariant, h = S − Gk, and K is the complex conjugation
operator [21]. We thus find two one-dimensional real coreps,
D1 and D2, for which the basis functions ψα may be calculated
by the usual projection method. The D1 mode has the spins
on the Cu1 site pointing in the b direction, with the a and c
components antiparallel between the two orbits of the Cu2 site
(Table I). For the D2 mode, on the other hand, the magnetic
moment on the Cu1 site lies in the ac plane, while the b
components of the Cu2 spins are antiparallel.

140412-2

Both nearest neighbour interactions ferromagnetic! Frustration from 
antiferromagnetic further neighbour couplings. 
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The polar point group (21ʹ) of the magnetic structure permits a ferroelectric 
polarization:
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• The kagome lattice antiferromagnet is the premier magnetic model for new 
quantum many-body states

• Most kagome lattice materials studied so far have been Cu2+ minerals, which 
allow for several perturbations beyond the nearest neighbour coupling

• Among these:

• Herbertsmithite is very close to the ideal kagome lattice antiferromagnet

• Volborthite shows orbital reorientation and trimerization

• KCu3As2O7(OD)3 is far away from QSL, but still frustrated and multiferroic

• These large differences in behaviour can be traced back to the orbital occupation 
and consequent superexchange pathways

• Despite the difficulty realising a QSL in kagome minerals, new frustrated 
behaviours often result because of the topology of the kagome lattice

• Future work: other candidates, charge doping…



We’re not at the top yet, but at least now 
we can enjoy the view
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