The long road to an ideal realization of the
kagome lattice antiferromagnet: a few
pertubations met along the way...
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Science & Technology

Motivation: Quantum Materials ey Science & Tech,

Materials that show macroscopic quantum behaviour because of electron
correlations and/or geometry/dimensionality

e.g. high-T¢ superconductors e.g. topological insulators

/N

Keimer et. al. Nature Phys. 13 1046; Tokura et. al. Nature Phys. 13 1056

Enormous promise for future energy transport, sensing, computing etc.
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Magnetic quantum materials ey cience & Tech

The first class of quantum materials are generally magnetic, and in many cases,
their novel properties are intimately related with their magnetism...
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Basov and Chubukov Nature Phys. 7 272
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However, these are complex systems with spin, charge, and orbital degrees of
freedom, which makes them difficult to deal with theoretically.
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Magnetic quantum materials e _ience & Tech

Can exotic states be achieved without chemical doping (and all the ensuing
complexity)? Yes, in magnetic systems...

o—90 O
—0—0
o—0 0

... however, most of these order at high temperature. Need to find a way to
enhance quantum fluctuations and destroy conventional magnetic order.
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The path to quantum spin liquids
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Outline

- Magnetic frustration

- QSL in the kagome lattice antiferromagnet
- Ground state

- Excitations - inelastic neutron scattering

- Neutron scattering on kagome lattice materials
« Overview of Cu2* minerals
« Herbertsmithite: our best shot at a QSL so far
- Volborthite: orbital order and trimerization

«  KCus3As207(0OD)s: multiferroicity in a material far from the QSL limit

« (Conclusion
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What IS frUStrathn? W@ Facilities Council
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Consequence 1: degeneracy = Stience & Tech

3 choices
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3 choices

Husimi and Syozi Prog. Theor. Phys. 5 117 (1950)
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Consequence 1: degeneracy = Stience & Tech

(scalar)
chirality
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2 choices

In both cases, huge degeneracy in GS (sometimes lifted by fluctuations)
Large barrier to conventional magnetic order
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Conseqguence 2: competition ey Science & Tech,

Frustrated Unfrustrated

o—9
00O

1200 “Néel!,
JS?
2

(Eij) = JS%cos§ = (i) = —J S
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Conseqguence 2: competition ey Science & Tech,

Classical (vector) Quantum (operator)
1
NG T k ]
120° “Valence bond”
2 JS(S +1
<EZ]> — JS2 cos b = J§ <E23> — ( 3_|_ )

11 TUM, 20/11/2017



Science & Technology

ValenCe bond StateS W@ Facilities Council

Just like in the classical case, there is an exponentially large number of dimer
coverings of the lattice...

2 choices
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Resonating Valence bond =y Jcience & Tech

Just like in the classical case, there is an exponentially large number of dimer
coverings of the lattice...

2 choices
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‘e
03
G
‘e
e
.
e

2 choices
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Resonating Valence bond =y Jcience & Tech

The system can gain energy by fluctuating between these configurations, as well
as ones with longer-ranged bonds:

B RVB + charges .
= superconductivity .

Anderson Science 235 1196
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EXCltathnS: SplnonS W@ Facilities Council

If one of the singlets is broken,

/
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EXCltathnS: SplnonS W@ Facilities Council
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EXCltathnS: SplnonS W@ Facilities Council
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EXCItatlonS: SplnonS W@ Facilities Council

Fractionalized, (potentially) deconfined quasiparticles...
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Kagome Iatthe W@ Facilities Council

The S = 1/2 kagome lattice antiferromagnet is THE model of frustration in 2D:

VANIVANVANVANIVAN

Is its ground state the long-sought RVB state?
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Kagome lattice: history of the ground state sy ence & Tech

lts ground state was initially proposed to be a gapless QSL, then a gapped VBS:
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Kagome lattice: history of the ground state sy ence & Tech

In 2011, state-of-the art DMRG simulations suggested strongly fluctuating SL with
weak dimer correlations:

Yan, Huse and White Science 332 1173

Still considerable debate, however: not SU(2) (uniform RVB) — either U(1) or Z»
— in the RVB picture, these correspond to different weightings of bonds
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Kagome lattice: ground state =y Jcience & Tech

States separated by minute energies (near a QCP), so interactions beyond J can
drastically alter the ground state. These are inevitable in real systems...

T T T T T T T T T T T
B D=3 RVB, Poilblanc er al. (2013)
- = MERA, Evenbly et al. (2010)
Series expansion, Singh ef al. (2008) |
w—— DMRG, Yan et al. (2011)
» =« » Lanczos+VMC, Y.Igbal et al. (2013) -
=« = Coupled Cluster, O.Gotze et al. (2011)
DMRG, Depenbrock ef al. (2012)
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Kagome lattice: S(Q)

Regardless what the actual ground-state is, the static structure factors are nearly
identical:

Z> QSL S(Q)

—4

—2 0 2 4
k

Depenbrock et. al. PRL 109 067201

However, the Z> QSL is associated with a small gap A in the excitation spectrum,

while the U(1) should be gapless...
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Kagome lattice: dynamical structure factor s ence & Tech

Non-interacting spinon limit: strongly dispersing continuum (one neutron, two
spinons). Introduce interactions between spinons and other excitations: broaden.

Z> QSL S(Q,w)
Free spinons Coupled spinons
14 | 20 g4l 0.6
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Punk et. al. Nature Phys. 10 289; Dodds et. al. PRB 88 224413

Spinons coupled to visons -
topological singlet excitations.
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Cu2* minerals as realisations of the kagome
lattice antiferromagnet
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Kagome lattice materials ey cience & Tech

How can we realize a kagome lattice material? If we consider inorganic materials
with TM octahedra...

S=1/2

Cu?+
(Ti%*)
(V)

J>100 KAFM

Most materials studied so far contain some variation on this motif...
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Sometimes nature gets in the way...

Hiking in Norway




Kagome lattice materials

Science & Technology
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Material SG 0 Order Reference(s)
e C2m 5K 1K e e o
Hetbertsmithite  gam  paok  <s0mK | " e B
B-CusZn(OH)eCl T. Han et. al. Nature 492, 406
KCu3Ang7(OD)3 C2/m +13.4 K 7 K Y. Okamoto et. al. JPSJ 81, 033707
Bayldonite C2/c +49 K <2K? Unpublished (H. Ishikawa, Y.
PbCus(AsOa4)2(OH)2 Okamoto)
osignielle — com 59K 7K Qe s i s |
CuscE:(jsvél)?)Z(C(I)Sl’-i;[ﬁHgo P2:/c -50 K 43K H. Ishikawa et. al. JPSJ 82, 063710
e RBM 0K <BOmMK O e §
CuszZn(OH)e(SO4) P2/a -79 K <50 mK Y. Li et. al., cond-mat:1310.2795
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What is the nature of the QSL in
Herbertsmithite?
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Herbertsmithite, CuzZn(OH)eCl2

0=-240K,J =180 K, Tn <50 mK

R-3m

M. P. Shores et. al. JACS 127 13462
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Herbertsmithite: high-energy excitations = . ence & Tech

High-energy S(Q,n) consistent with very short-range correlations even at 50 mK!

IN4, ILL, 50 mK

® SAF4-5meV
A SAF6-7meV
= SAF8-1OmeV

- ~o

Seeo
-
~~o
S
~

Q (A1) Q(A")
M. A. de Vries GJN et. al. PRL 103 237201

No sign of gap down to ~ 3 meV.
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Herbertsmithite: high-energy excitations = . cnce& Tech

High-energy S(Q,n) consistent with very short-range correlations even at 50 mK!

MACS, NIST, 1.6 K

max

4n 0 4n _4n O 4r
3 3
k, Han et. al. Nature 492 406 ky

_4rn O 4n _4rn O AT
3 3 3 3

k. Punk et. al. Nature Phys. 10 289 &,
Calculation for Z> spin liquid with spinon-vison interactions agrees qualitatively!
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Herbertsmithite: a true QSL?

Science & Technology
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These look like encouraging signs of a QSL, but there are a few caveats...

Lack of inversion centre means
Dzyaloshinskii-Moriya allowed:
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Zorko et. al. PRL 101 026405; Bert et. al. Reflets Phys. 37 4; Cepas et. al. PRB 78 140405
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Herbertsmithite: a true QSL?

These look like encouraging signs of a QSL, but there are a few caveats...

0-6% Zn2+ : ~1 %, valence bond glass

o\ .
e o
/.\i\?\‘\>'

- &‘f,‘/\ 15-19% Cu2+
Ve Y YW
23909

Freedman et. al. JACS 132 16185 Singh, PRL 104 177203
de Vries et. al. PRL 100 157205
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Herbertsmithite: low-energy excitations = . ence & Tech

Low-energy S(Q,n) looks ungapped, although dominated by interplane defects
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QAT Q[A™']1 Nilsen et. al. JPCM 25 106001

Defects weakly correlated, but can be decoupled with small magnetic field.
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Herbertsmithite: low-energy excitations = . ence & Tech

Single crystals add some detail to this picture.

Fim =0.4 meV Fim=1.3 meV Calculation
1 v 1 v 1 v 1 v v 1 v 1 v 1
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Han et. al. PRB 94 160409
Antiferromagnetic coupling between interplane sites causes low-energy response.
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Herbertsmithite: summary

Science & Technology
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1. Unclear whether spin gap is present or not - given large DM perturbation,

expect gap to at least partially close.
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2. If gapis present, VBG or Z> QSL? Entirely depends on how many defects are

present on the kagome lattice
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What other states can be realised In
kagome minerals?
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Kagome lattice materials ey cience & Tech

Material SG 0 Order Reference(s)
: Z. Hiroi et. al., JPSJ 70, 3377
VOIbOfthlte M. Yoshida et. al., PRL 103, 077207
CusV207(0OH)2.2H20 G. J. Nilsen et. al., PRB 84, 172401
ithi — M. P. Shores et. al. JACS 127, 13462
Herbertsmithite R3m 240 K < 50 mK de Vries et. al. PRL 103, 237201 § )
B-CusZn(OH)eCl2 T. Han et. al. Nature 492, 406
KCusAs207(0OD)s C2/m +13.4 K 7 K Y. Okamoto et. al. JPSJ 81, 033707
Bayldonite C2/c +49 K <2K? Unpublished (H. Ishikawa, Y.
PbCus(AsO4)2(OH)z ! Okamoto)
Vesignieite Y. Okamoto et. al., JPSJ 78, 033701
BaCus(\904)2(OH)2 C2/m -39 K 7K M. Yoshida et. al., JPSJ 82, 013702 §
Edwardsite H. Ishi
- . Ishikawa et. al. JPSJ 82, 063710
CusCa(SONs(OH)s a0 T 21/C 50 K 4.3 K o
Kapellasite A Colman et al., Chem. Mater 20 6897
a-CuE)Zn(OH)BCIQ R3m 0K <50 mK Fak et. al. PRL, 109 137208 :
CuszZn(OH)e(SO4) P2/a -79 K <50 mK Y. Li et. al., cond-mat:1310.2795
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Kagome materials: Jahn-Teller ) Sclence & Tech

Cu2+ is strongly Jahn-Teller active. Orbital can be inferred from local geometry

Trigonal/rhombohedral

Uniform orbital
order

dy> 2
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Kagome materials: Jahn-Teller ) Sclence & Tech

Cu2+ is strongly Jahn-Teller active. Orbital can be inferred from local geometry

Monoclinic

Alternating orbital
order

d o

2

15 different combinations
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Superexchange in Cu?* minerals

Science & Technology
W Facilities Council

The orbital order not only leads to an anisotropy in the nearest neighbour bond
distances, but also to fundamentally different exchange pathways:

-

e. g. uniform

+Cu?+ - X - Cuz+ ~120°

Antiferromagnetic

~N

J .

N
e.g. alternating
e
.Cu2+ - X - Cu2+ ~90-105°
Can be ferromagnetic
J

Yoon et. al. Inorg. Chem 44 8076

43
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Volborthite: CuzV207(0OH)2.2H20

C2/m, 8 =-115 K, orbital order

— 100(60) K
7 — -80(10) K
---35(15) K
\\Y’/ % =y =Y .
' /.\ /A\ @ Q | i
Y 4
Hiroi et. al. JSSPJ 70 3377 Janson et. al. PRB 82 134434

DFT calculations consistent with naive assumptions from coordination of Cu?+:
looks like volborthite can be described as coupled spin chains...
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Volborthite: powder

Science & Technology
W@ Facilities Council

... however, despite being far away from the ideal kagome lattice antiferromagnet,
volborthite shows no order down to low T

0.25

0.05

(barns st™! f.u._1)

0.25

mag

0.2

0.15

(do / dQ)

0.1

0.05

7 Spin Wave 0.05 K, IN4
J5 =5.1 meV

GJN et. al. PRB 84 172401

Only weak short-range order associated with incommensurate positions Q1 and
Q2, spin-wave-like spectrum at 50 mK. Order not captured by chain model.
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Volborthite: orbital order

A twist in the tale: high-quality powders and single crystals show an additional
structural transition near room temperature:

T>310 KC2/m T<310 KC2/c

\"/ \"/'\"/

’A\ | IA\ | ,A\‘

This transition is an “orbital switching” — a very rare case for Cu2* in an inorganic
material, where such transitions usually occur at high T.

Yoshida, GJN et. al. Nature Comms. 3 860
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Volborthite: current status

Science & Technology
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Interactions within trimers formed by orbital order dominate, resulting in effective

triangular lattice system

I? }. E— ‘:7i
F 0 KKK - T3
“magnetic AT AUARTR T Js
trimer effective
model

i
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2 2F T .
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£ o'1||o'2|o'3o Lop ]
£ [ Blab ]
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Janson et. al. PRL 117, 037206

Interesting bond nematic phase formed from condensation of two-magnon bound

states at low H...
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ReVISItIng pOWder data: W@ Facilities Council

Powders do no undergo “orbital switching” because of disorder (possibly related to
disorder of interplane H20)

0.25 : T i '
+ : : 200 K : : 15K

0.2t j b o LR N TR AT SR
MR . b d
. "“MM ...... e

0.05F SRR :

(barns st™! f.u.'1)

0.25

)mag
o

=

(9]
(&)}
=

(do / dQ

Diffuse scattering can thus be interpreted as small clusters (mostly dimers) +
short-range magnetic order...
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KCu3As207(0OD)s (KCAO)

Science & Technology

W Facilities Council

Similar orbital order to volborthite, but different orbital orientations:

C2/m,0=+14K, Tn=7.1K

.
- " ..-
\ }

""‘_. "
— V4 :
/! \omm

!

Okamoto GJN et. al. JPSJ 81, 033707

Yvab

F or AF?
F or AF?
AF
AF
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Magneth StrUCture W@ Facilities Council

Unlike volborthite, magnetic order at T ~ 6/2 in a helical magnetic structure with
propagation vector k = (kx O kz) - there must be some frustration!

D20, 1.8 K
T 2\ T
(000) Y- =1.89
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p Oi} u- LY
(N (R Rl | I I )0 0 T T T e N T A A
_50 I L
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20 (°)

GJN et. al. PRB 89 140412 (R)
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KCuzAs207(0OD)s Hamiltonian

Unlike volborthite, magnetic order at T ~ 6/2 in a helical magnetic structure with
propagation vector k = (kx O kz) - there must be some frustration!

‘J|=1‘Jab=0 JI=-1Jab=0
| S i 5
N | -
Ferri !
| Ferri

_ |a=¥38x¥3,Cs

29 q =f0 | .

- CS type ferri type terri -

Ferro ‘
-5
J, /1J

LSWT, J =-2 meV

15

o
©

o o
£ (o))
Normalized Counts

o
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o

0.5

GJN et. al. PRB 89 140412

0.5 1 1.5 2 2.5

Both nearest neighbour interactions ferromagnetic! Frustration from
antiferromagnetic further neighbour couplings.
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Multiferroicity

The polar point group (21') of the magnetic structure permits a ferroelectric
polarization:

GJN et. al. PRB 95, 214415
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Conclusions

Science & Technology
W@ Facilities Council

The kagome lattice antiferromagnet is the premier magnetic model for new
guantum many-body states

Most kagome lattice materials studied so far have been Cu2+ minerals, which
allow for several perturbations beyond the nearest neighbour coupling

Among these:

- Herbertsmithite is very close to the ideal kagome lattice antiferromagnet

- Volborthite shows orbital reorientation and trimerization

«  KCus3As207(0OD)s is far away from QSL, but still frustrated and multiferroic

These large differences in behaviour can be traced back to the orbital occupation
and consequent superexchange pathways

Despite the difficulty realising a QSL in kagome minerals, new frustrated
behaviours often result because of the topology of the kagome lattice

Future work: other candidates, charge doping...
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